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Why Image Compression?

Host PC

● Lack of bandwidth, large 
data cannot be 
transmitted

● Slow execution of 
algorithms 

● Eradicate redundant 
information

Solution:  Compressing an image into a lower dimensional 
vector and restoring it as an image
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With image compression

Image 
compression 
(on board)

Decompression
(on host PC)
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How to evaluate performance?

S, S' are the sizes of image before & after compression 

● Compression ratio: S/S’ 
● Bits per pixel (bpp): S’ /total pixels
● PSNR: log inverse of mean squared error
● SSIM:  Structural Similarity Index
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Conventional methods
Run length encoding

Loss less

Image 
compression

Lossy

PNG

Discrete Cosine Sampling 
(JPEG)

Chroma subsampling
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Why use Deep Learning Methods?

●  More flexible for multi-tasking devices: 
○ Suppose we want to perform classification from input 

image on host PC 
○ Waste of time reconstructing image and then classifying

● Deep Learning methods have recently provided 
higher PSNR and SSIM metrics than JPEG

● Auto encoders are powerful feature extractors
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Lossy Compressive Auto-encoders 

DecoderEncoder Quantizer
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Pq (empirical prob dist. of the 
quantization function)  

Quantization applied by rounding 
to the nearest integer, easier to 
compress in a bitstream
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➢ We need low information Entropy
➢ Most research is focused on tackling the 

non-differentiability 
○ Stochastic binarization
○ Adding uniform noise to output and using entropy of 

this dist

Minimize H[Pq] + || x - x ` ||2

Lossy CAE
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Using Laplacian as compressed image

Image Laplacian

● Most pixels are zero
● Easier to compress
● Easier to 

reconstruct
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Auto Encoder: Image to Laplacian

I

Loss =     | I - I ` |    +     | L - L ` |

I L  ` I `

 

L
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Cycle Consistent GAN: Cycle-GAN

X Y

DX DY

X Y`

G
X`

F
Y X`

F

Y`

G

https://arxiv.org/abs/1703.10593
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X: image of domain X
Y: image of domain Y
DX: discriminator that classifies images 
of domain X 
DY: discriminator that classifies images 
of domain Y
G: translates images from domain X to Y
F: translates images from domain Y to X 

https://arxiv.org/abs/1703.10593
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Cycle Consistent GAN: Optimization
Adversarial loss for G and DY

Total Loss
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Learning Conditions
● Input image: 1008 x 1008
● Output image: same size as input image
● Compressed image: ½ of input image 
● Compression ratio: 4
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Environmental conditions
● Training done on Google Colab 

○ 15 Gb GPU available
○ 12 Gb RAM available

● We used the Jetson Nano because is it similar to the one used in 
the real setting
○ GPU: NVIDIA Maxwell architecture with 128 NVIDIA CUDA 

cores
○ CPU: Quad-core ARM Cortex-A57 MPCore processor

● Host PC:
○ Personal Laptop: HP Pavilion (8GB RAM)
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Cycle-GAN models 

Model size PSNR SSIM

62 Mb 28.11 0.7511

2 Mb 28.62 0.7942

600 Kb 30.23 0.8035

● Input image: 504 x 504
● Compressed size: 252 x 252
● Compressed image: [0, 255]
● Output image: 504 x 504
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Original Reconstructed

➢ Image is blurry
➢ Structural 

information is 
lost

➢ Many small 
details are lost
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Original Reconstructed

➢ Slightly more 
sharper than 
before

➢ Image details 
and texture is 
still not 
reconstructed
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Original Reconstructed

➢ Similar to 
previously 
reconstructed 
images using 
Cycle-GAN
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Auto encoder models 

● Input image: 504 x 504
● Compressed size: 252 x 252
● Compressed image: [0, 255]
● Output image: 504 x 504

Model size PSNR SSIM

126Mb 27.36 0.7491

4 Mb 25.56 0.6941
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Original Reconstructed

➢ Images are 
very blurry

➢ Intensity 
information is 
lost 

➢ Small details 
are lost
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Original Reconstructed

➢ Auto encoder 
models are 
unable to 
reconstruct 
images with 
minimal loss
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Lossy CAE
● Input image: 504 x 504
● Compressed size: n x 126 x 126 (n=8, 32)
● Compressed image: {0, 1}
● Output image: 504 x 504

Model size PSNR SSIM

53 Mb 28.88 0.7874

2 Mb 28.56 0.7855
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Original Reconstructed

➢ Slightly better 
compared to 
previous 
models 

➢ Still, the 
intensity and 
structure loss 
persists
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Original Reconstructed

➢ Similar to 
previously 
reconstructed 
images using 
Lossy CAE
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Training the models on larger images
● Problems faced

○ More computations are required
■ Due to increasing in image size
■ This calls for training models of smaller size
■ Smaller models are not good feature extractors

○ Training instability
■ Due to environmental restrictions
■ Google colab offers 15 GB GPU

● We need to train smaller models for larger images 
without losing structural information.
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Solution: Preventing information loss
● Better loss function

○ SSIM is a good and robust metric for comparing 
two images

○ Minimize     (1-SSIM)    (not many papers/codebases on GitHub have used it!)

● Better performance obtained on smaller models
● Training stability
● Leads to higher PSNR as compared to using MSE 
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Cycle GAN 
● Training involves 4 networks

○ Generator (image to features)
○ Generator (features to image)
○ 2 Discriminators

● GPU limit (15 GB) on Google Colab
● Divide image into patches of 504 x 504 (4 patches)

○ Then pass to the encoder
○ Batch size during testing is 4
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Original Reconstructed
➢ Compared to 

previous 
models, the 
images are 
much sharper

➢ For Cycle-GAN, 
the lines along 
which images 
are patched 
are still visible
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Original Reconstructed

➢ Less intensity 
loss

➢ Decrease in 
blurriness

➢ Structure is 
maintained
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Original Reconstructed

➢ The SSIM loss 
has helped to 
reconstruct 
sharper 
images in case 
of Cycle GAN
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Auto encoder

● Low performance when output of the encoder is 
constrained to be Laplacian

● Experiments conducted without the Laplacian
● Increase in performance observed
● Input size: 1008 x 1008
● Compressed image: 252 x 252
● PSNR: 31.17
● SSIM: 0.875
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Original Reconstructed

➢ Details of 
images are 
preserved 
while 
compression
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Original Reconstructed

➢ Background 
objects are 
also 
reconstructed 
with adequate 
details
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Original Reconstructed

➢ Slight loss of 
structure

➢ Notice the 
shelf!
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Lossy CAE

● Input size: 1008 x 1008
● Compressed image: 8 x 252 x 252
● PSNR: 34.01
● SSIM: 0.9343
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Original Reconstructed

➢ Notice the 
shelf in this 
reconstructed 
image

➢ Better results 
than previous 
models

41



Original Reconstructed

➢ Details are 
well 
preserved

➢ Image is 
sharper
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Original Reconstructed

➢ Results of 
Lossy CAE 
trained with 
SSIM as loss 
outperform 
previous 
models
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Original Reconstructed

➢ This is a result  
from lossy CAE 
trained with 
MSE loss

➢ This results is 
much more 
blurry 
compared to 
the one in 
previous slide
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On the Jetson Nano

Image Encode

Send

Reshape, convert to tensor

Reshape, 
long Convert to cpu tensor

Decode
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What models are considered efficient?

● Basic conditions for a model to be considered 
good:
○ High PSNR and SSIM
○ Lower model size 
○ Average time to encode one image < 33 ms



Cycle GAN
Model size 
(PSNR)
(Size)

Encode Misc
(encode)

GPU 
-> 
CPU

Pickle Send T200 Avg
Value

Misc
(decode)
(CPU)

Decode
(on CPU)
(in ms)

(in ms) (in ms) (ms) (ms) (ms) (sec) (ms) (ms) (in ms)

1 2 Mb 
(28.62)
(504 x 504)

10 - 25 0.2 - 10 0.5 - 1 1 - 4 9 - 15 6.821 34 5 - 10 800-1200

2 600 Kb
(30.23)
(504 x 504)

13 - 25 0.2 - 0.3 0.5 - 1 1 - 4 9- 15 7.084 33 5 - 10 400-500

3 600 Kb
(30.23)
(1008 x 
1008)

19 - 25 0.2 - 0.3 0.5 - 1 1 - 4 3 - 4
(high 
buffer 
size)

7.559 37 -----    ------
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Auto encoder
Model size 
(PSNR)
(Size)

Encode Misc
(encode)

GPU 
-> 
CPU

Pickle Send T200 Avg
Value

Misc
(decode)
(CPU)

Decode
(on CPU)

(in ms) (in ms) (ms) (ms) (ms) (sec) (ms) (ms) (in ms)

1 126 Mb 
(27.36)
(504 x 504)

30 - 60 0.2 - 1.0 1 - 2 1 - 4 1 - 3 10.259 51   -------   --------

2 4 Mb
(25.56)
(504 x 504)

13 - 65 0.2 - 0.5 0.7 - 3 1- 4 1- 3 8.747 43 5 - 10 400 - 700

3 1 Mb
(31.71)
(1008 
x1008)

19 - 28 0.2 - 1 1 - 3 2 - 5 1 - 3 5.971 30    ------     --------
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Lossy CAE
Model size 
(PSNR)
(Size)

Encode Misc
(encode)

GPU 
-> 
CPU

Pickle Send T200 Avg
Value

Misc
(decode)
(CPU)

Decode
( CPU)

(in ms) (in ms) (ms) (ms) (ms) (sec) (ms) (ms) (in ms)

1 35 Mb 
(28.88)
(504 x 504)

10 - 25 0.2 - 1 3 - 10 3 - 6 100 - 
200

8.694 43    -----    ------

2 2 Mb
(28.56)
(504 x 504)

7 - 15 0.2 - 1 1 - 3 1 - 3 10-15 4.845 24     -----  > 10 
seconds

3 2 Mb
(34.01)
(1008 x 
1008)

8 - 15 0.2 - 1 6 - 10 5 - 7 6 - 10
(high 
buffer 
size)

5.763 28                   -----    ------

50



Outline
1. What is Image Compression?
2. Deep Learning Techniques for Image Compression
3. Implementation of models
4. Optimizing results 
5. Testing on Jetson Nano
6. Comparing the models
7. Conclusion
8. Future Work



Comparison 
Lowest (for 1008 

x 1008)
Model Size Best value

Encoding time Lossy 
CAE

2 Mb 8 - 15  ms

Compressed 
size

Auto 
encoder

1 Mb 252 x 252 

Average time per 
image

Lossy 
CAE

2 Mb 28 ms

Time to send All models take almost 
same time

3 - 10 ms 
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Survey
Model Compression rate 

possibility
Processing speed
Possibility

Difficulties Other

AutoEncoder Can be compressed 
more
(⅛ of original size)

Fast No constraints on 
the output of the 
encoder for better 
results

(1 - SSIM) loss 
gives better results

Cycle-GAN Increasing 
compression is 
difficult to train

Slow Unstable training, 
Dithering

Lossy CAE Can be compressed 
by a larger size

Fast Decreasing number 
of features lead to 
poor results

Uses stochastic 
binarization,
(1 - SSIM) loss 
gives better results
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Conclusions

● From the above experiments, Lossy CAE models are the best 
performing model in terms of image reconstruction quality and 
processing time required on the Jetson Nano.

● However, the features extracted by encoder of Lossy CAE are 
larger in size. To obtain features of smaller size, Auto-encoder 
models are the best in terms of size of compressed image.

● SSIM loss has provided a great performance boost for smaller 
models and can be used in the future to train image 
reconstruction models
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Future work

● Self distillation is a training procedure by which models can be 
compressed more in size so that the number of computations 
are lesser. I would definitely try this method to train the Lossy 
CAE and Auto encoder for performance improvement

● Supposed we want to create a depth map, perform semantic 
segmentation and surface normal estimation on the host PC. We 
can use a multi-tasking network that can predict all three with 
single image by directly sending features. All three tasks will be 
done on a single feature vector.
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