Image Compression using Deep Learning

Ruchika Chavhan

Outline

- 1. What is Image Compression?
- 2. Deep Learning Techniques for Image Compression
- 3. Implementation of models
- 4. Optimizing results
- 5. Testing on Jetson Nano
- 6. Comparing the models
- 7. Conclusion
- 8. Future Work

Outline

1. What is Image Compression?

- 2. Deep Learning Techniques for Image Compression
- 3. Implementation of models
- 4. Optimizing results
- 5. Testing on Jetson Nano
- 6. Comparing the models
- 7. Conclusion
- 8. Future Work

Why Image Compression?

https://www.businessinsider.jp/post-199315

Host PC

- Lack of bandwidth, large data cannot be transmitted
- Slow execution of algorithms
- Eradicate redundant information

Solution: Compressing an image into a lower dimensional vector and restoring it as an image

With image compression

https://www.businessinsider.jp/post-199315

How to evaluate performance?

S, S' are the sizes of image before & after compression

- Compression ratio: S/S'
- Bits per pixel (bpp): S' /total pixels
- PSNR: log inverse of mean squared error
- SSIM: Structural Similarity Index

Conventional methods

Outline

- 1. What is Image Compression?
- 2. Deep Learning Techniques for Image Compression
- 3. Implementation of models
- 4. Optimizing results
- 5. Testing on Jetson Nano
- 6. Comparing the models
- 7. Conclusion
- 8. Future Work

Why use Deep Learning Methods?

- More flexible for multi-tasking devices:
 - Suppose we want to perform classification from input image on host PC
 - Waste of time reconstructing image and then classifying
- Deep Learning methods have recently provided higher PSNR and SSIM metrics than JPEG
- Auto encoders are **powerful feature extractors**

Lossy Compressive Auto-encoders

Lossy CAE

- > We need low information Entropy
- Most research is focused on tackling the non-differentiability
 - Stochastic binarization
 - Adding uniform noise to output and using entropy of this dist

$$\mathsf{Minimize} \; \mathbf{H}[\mathbf{P}_{q}] + || \; \mathbf{x} - \mathbf{x} \; \mathbf{u}_{2}$$

Using Laplacian as compressed image

Image

Laplacian

 Most pixels are zero
 Easier to compress
 Easier to reconstruct

Auto Encoder: Image to Laplacian

Cycle Consistent GAN: Cycle-GAN

D_x: discriminator that classifies images of domain X

D_Y: discriminator that classifies images of domain Y

G: translates images from domain X to Y F: translates images from domain Y to X

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] \\ + \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1].$$

https://arxiv.org/abs/1703.10593

Cycle Consistent GAN: Optimization

Adversarial loss for G and D_{γ}

$$\mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D_Y(y)] \\ + \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 - D_Y(G(x)))],$$

 $\min_{G} \max_{D_Y} \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y).$

Total Loss

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) + \mathcal{L}_{\text{GAN}}(F, D_X, Y, X) + \lambda \mathcal{L}_{\text{cyc}}(G, F),$$

$$G^*, F^* = \arg\min_{G,F} \max_{D_x,D_Y} \mathcal{L}(G,F,D_X,D_Y).$$

Outline

- 1. What is Image Compression?
- 2. Deep Learning Techniques for Image Compression
- 3. Implementation of models
- 4. Optimizing results
- 5. Testing on Jetson Nano
- 6. Comparing the models
- 7. Conclusion
- 8. Future Work

Learning Conditions

- Input image: 1008 x 1008
- Output image: same size as input image
- Compressed image: ½ of input image
- Compression ratio: 4

Environmental conditions

- Training done on Google Colab
 - 15 Gb GPU available
 - 12 Gb RAM available
- We used the Jetson Nano because is it similar to the one used in the real setting
 - GPU: NVIDIA Maxwell architecture with 128 NVIDIA CUDA cores
 - CPU: Quad-core ARM Cortex-A57 MPCore processor
- Host PC:
 - Personal Laptop: HP Pavilion (8GB RAM)

Cycle-GAN models

- Input image: 504 x 504
- Compressed size: 252 x 252
- Compressed image: [0, 255]
- Output image: 504 x 504

Model size	PSNR	SSIM
62 Mb	28.11	0.7511
2 Mb	28.62	0.7942
600 Kb	30.23	0.8035

9

Reconstructed

- Image is blurry
 Structural information is lost
 - Many small details are lost

Reconstructed

- Slightly more sharper than before
- Image details and texture is still not reconstructed

Reconstructed

Similar to previously reconstructed images using Cycle-GAN

Auto encoder models

- Input image: 504 x 504
- Compressed size: 252 x 252
- Compressed image: [0, 255]
- Output image: 504 x 504

Model size	PSNR	SSIM
126Mb	27.36	0.7491
4 Mb	25.56	0.6941

Reconstructed

- Images are very blurry
 Intensity information is lost
- Small details are lost

Reconstructed

Auto encoder models are unable to reconstruct images with minimal loss

Lossy CAE

- Input image: 504 x 504
- Compressed size: n x 126 x 126 (n=8, 32)
- Compressed image: {0, 1}
- Output image: 504 x 504

Model size	PSNR	SSIM
53 Mb	28.88	0.7874
2 Mb	28.56	0.7855

Reconstructed

Slightly better compared to previous models Still, the intensity and structure loss persists

Reconstructed

Similar to previously reconstructed images using Lossy CAE

Outline

- 1. What is Image Compression?
- 2. Deep Learning Techniques for Image Compression
- 3. Implementation of models

4. Optimizing results

- 5. Testing on Jetson Nano
- 6. Comparing the models
- 7. Conclusion
- 8. Future Work

Training the models on larger images

- Problems faced
 - More computations are required
 - Due to increasing in image size
 - This calls for training models of smaller size
 - Smaller models are not good feature extractors
 - Training instability
 - Due to environmental restrictions
 - Google colab offers 15 GB GPU
- We need to train smaller models for larger images without losing structural information.

Solution: Preventing information loss

- Better loss function
 - SSIM is a good and robust metric for comparing two images
 - Minimize (1-SSIM) (not many papers/codebases on GitHub have used it!)
- Better performance obtained on smaller models
- Training stability
- Leads to higher PSNR as compared to using MSE

Cycle GAN

- Training involves 4 networks
 - Generator (image to features)
 - Generator (features to image)
 - 2 Discriminators
- GPU limit (15 GB) on Google Colab
- Divide image into patches of 504 x 504 (4 patches)
 - Then pass to the encoder
 - Batch size during testing is 4

Reconstructed

Compared to previous models, the images are much sharper For Cycle-GAN, the lines along which images are patched are still visible

Reconstructed

- Less intensity loss
- Decrease in blurriness
 - Structure is maintained

Reconstructed

The SSIM loss has helped to reconstruct sharper images in case of Cycle GAN

Auto encoder

- Low performance when output of the encoder is constrained to be Laplacian
- Experiments conducted without the Laplacian
- Increase in performance observed
- Input size: 1008 x 1008
- Compressed image: 252 x 252
- PSNR: 31.17
- SSIM: 0.875

Reconstructed

Details of images are preserved while compression

Reconstructed

Background
objects are
also
reconstructed
with adequate
details

Reconstructed

Slight loss of structure Notice the shelf!

Lossy CAE

- Input size: 1008 x 1008
- Compressed image: 8 x 252 x 252
- PSNR: 34.01
- SSIM: 0.9343

Reconstructed

- Notice the shelf in this reconstructed image
- Better results than previous models

Reconstructed

Details are well
 preserved
 Image is sharper

Reconstructed

Results of Lossy CAE trained with SSIM as loss outperform previous models

Reconstructed

 \succ This is a result from lossy CAE trained with MSE loss This results is much more blurry compared to the one in previous slide

Outline

- 1. What is Image Compression?
- 2. Deep Learning Techniques for Image Compression
- 3. Implementation of models
- 4. Optimizing results
- 5. Testing on Jetson Nano
- 6. Comparing the models
- 7. Conclusion
- 8. Future Work

On the Jetson Nano

What models are considered efficient?

- Basic conditions for a model to be considered good:
 - High PSNR and SSIM
 - Lower model size
 - Average time to encode one image < 33 ms

Cycle GAN

	Model size (PSNR) (Size)	Encode	Misc (encode)	GPU -> CPU	Pickle	Send	T ₂₀₀	Avg Value	Misc (decode) (CPU)	Decode (on CPU) (in ms)
		(in ms)	(in ms)	(ms)	(ms)	(ms)	(sec)	(ms)	(ms)	(in ms)
1	2 Mb (28.62) (504 x 504)	10 - 25	0.2 - 10	0.5 - 1	1 - 4	9 - 15	6.821	34	5 - 10	800-1200
2	600 Kb (30.23) (504 x 504)	13 - 25	0.2 - 0.3	0.5 - 1	1 - 4	9- 15	7.084	33	5 - 10	400-500
3	600 Kb (30.23) (1008 x 1008)	19 - 25	0.2 - 0.3	0.5 - 1	1 - 4	3 - 4 (high buffer size)	7.559	37		48

Auto encoder

	Model size (PSNR) (Size)	Encode	Misc (encode)	GPU -> CPU	Pickle	Send	T ₂₀₀	Avg Value	Misc (decode) (CPU)	Decode (on CPU)
		(in ms)	(in ms)	(ms)	(ms)	(ms)	(sec)	(ms)	(ms)	(in ms)
1	126 Mb (27.36) (504 x 504)	30 - 60	0.2 - 1.0	1 - 2	1 - 4	1 - 3	10.259	51		
2	4 Mb (25.56) (504 x 504)	13 - 65	0.2 - 0.5	0.7 - 3	1- 4	1- 3	8.747	43	5 - 10	400 - 700
3	1 Mb (31.71) (1008 x1008)	19 - 28	0.2 - 1	1 - 3	2 - 5	1 - 3	5.971	30		

Lossy CAE

	Model size (PSNR) (Size)	Encode	Misc (encode)	GPU -> CPU	Pickle	Send	T ₂₀₀	Avg Value	Misc (decode) (CPU)	Decode (CPU)
		(in ms)	(in ms)	(ms)	(ms)	(ms)	(sec)	(ms)	(ms)	(in ms)
1	35 Mb (28.88) (504 x 504)	10 - 25	0.2 - 1	3 - 10	3 - 6	100 - 200	8.694	43		
2	2 Mb (28.56) (504 x 504)	7 - 15	0.2 - 1	1 - 3	1 - 3	10-15	4.845	24		> 10 seconds
3	2 Mb (34.01) (1008 x 1008)	8 - 15	0.2 - 1	6 - 10	5 - 7	6 - 10 (high buffer size)	5.763	28		 50

Outline

- 1. What is Image Compression?
- 2. Deep Learning Techniques for Image Compression
- 3. Implementation of models
- 4. Optimizing results
- 5. Testing on Jetson Nano

6. Comparing the models

- 7. Conclusion
- 8. Future Work

Comparison

Lowest (for 1008 x 1008)	Model	Size	Best value
Encoding time	Lossy CAE	2 Mb	8 - 15 ms
Compressed size	Auto encoder	1 Mb	252 x 252
Average time per image	Lossy CAE	2 Mb	28 ms
Time to send	All mode sar	ls take almost ne time	3 - 10 ms

Survey

Model	Compression rate possibility	Processing speed Possibility	Difficulties	Other
AutoEncoder	Can be compressed more (¹ / ₈ of original size)	Fast	No constraints on the output of the encoder for better results	(1 - SSIM) loss gives better results
Cycle-GAN	Increasing compression is difficult to train	Slow	Unstable training, Dithering	
Lossy CAE	Can be compressed by a larger size	Fast	Decreasing number of features lead to poor results	Uses stochastic binarization, (1 - SSIM) loss gives better results

Outline

- 1. What is Image Compression?
- 2. Deep Learning Techniques for Image Compression
- 3. Implementation of models
- 4. Optimizing results
- 5. Testing on Jetson Nano
- 6. Comparing the models

7. Conclusion

8. Future Work

Conclusions

- From the above experiments, **Lossy CAE** models are the best performing model in terms of image reconstruction quality and processing time required on the Jetson Nano.
- However, the features extracted by encoder of Lossy CAE are larger in size. To obtain features of smaller size, **Auto-encoder** models are the best in terms of size of compressed image.
- SSIM loss has provided a great performance boost for smaller models and can be used in the future to train image reconstruction models

Future work

- Self distillation is a training procedure by which models can be compressed more in size so that the number of computations are lesser. I would definitely try this method to train the Lossy CAE and Auto encoder for performance improvement
- Supposed we want to create a depth map, perform semantic segmentation and surface normal estimation on the host PC. We can use a multi-tasking network that can predict all three with single image by directly sending features. All three tasks will be done on a single feature vector.

Acknowledgements

- I would like to thank Sony Cooperation to give me this great opportunity.
- Thank you to Takuzo Ohara-san, Satoru Mizusawa-san and Koji Ichikawa-san for their valuable guidance
- To Miho Nomura-san and Chinatsu Honda-san for coordinating
- I would further like to thank all members of the TL-13 for a wonderful experience
- My goal in the future is to pursue a PhD in Artificial Intelligence, and this internship has provided me with a great exposure!
- Thank you All !