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ABSTRACT

We consider the task of performing semi-supervised image classification for multiple

visual domains in medical data using a single integrated framework to alleviate two

salient limitations: domain dependence of neural networks and data scarcity. Un-

der this premise, we learn a universal parametric family of neural networks, which

share a majority of their weights across domains by learning a few adaptive domain-

specific parameters. We train these universal networks on a suitable pretext task that

captures a meaningful representation for image classification and further finetune

the networks using a small fraction of training data. We perform our experiments

on five medical datasets spanning breast, cervical, and colorectal cancer. Extensive

experiments on architectures of domain-adaptive parameters demonstrate that our

data-deficient universal model performs equivalent to a fully supervised setup, ren-

dering a semi-supervised multi-domain setting for medical data extremely feasible in

the real world.

Keywords: Semi-supervised Learning, Multi-domain Learning, Medical image clas-

sification
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Chapter 1

Introduction

The adoption of machine learning techniques for medical data and image analysis has

significantly expanded and gathered immense attraction from researchers in recent

decades [24][22]. Consequently, several deep learning techniques are being rapidly

utilized to automate and improve predictions in the fields of genomics research [11],

cancer prognosis [4], and medical imaging [25]. The effect of this permeation can

also be seen widely in the the field of medical disorder classification, tumor/lesion

segmentation, abnormality detection in areas like neurology [2], ophthalmic [10] and

thoracic imaging [38], and digital and microscopic pathology [16]. Observing research

from the past few decades, it can be deduced that the proliferation of computer

automation in medical research has led to an unprecedented expansion of algorithms

and datasets catering to medical researchers.

1.1 Learning with data scarcity

However, owing to the data-centric nature of machine learning, a surge in research

implies an escalated need for labeled data collection, which is both time consuming

and laborious. The lack of labeled data has motivated myriad research in the field

of unsupervised [32], self-supervised [27], and semi supervised [9] learning. These

learning paradigms are discussed in detail below.

1.1.1 Self-supervised Learning

Self-supervised learning is an elegant subset of machine learning where a model can

generate output labels intrinsically from unlabeled data. The self-supervised, also

1



Figure 1.1: Self supervised learning. Credits:
https://amitness.com/2020/02/illustrated-self-supervised-learning/

known as the pretext task guides a supervised loss function by learning inherent

properties or semantic representations of the objects which are further used for re-

lated downstream tasks. A convolutional neural network (CNN) is trained to solve

the pretext task and generate pseudo labels for the dataset based on the attributes

learnt from the objective function of the pretext task. In some works, intrinsic la-

tent representations learnt by solving a pretext task are utilized for semi-supervised

learning with scarce annotations[31][21][36]. Parameters of the model trained on the

self-supervised task are finetuned on a few annotated samples to perform a down-

stream visual task.

1.1.2 Semi-supervised Learning

Semi-supervised learning considers a few labeled samples available with a large amount

of unlabeled data. The goal of a semi-supervised learning model is to make effective

use of all of the available data, labeled and unlabeled. The semi-supervised setup

holds immense utility in real world applications, especially for medical data on ac-

count of limited annotations, patients, and means of data collection. As a result, a

rich body of literature exists for semi-supervised learning and self-supervised learning

for medical data as well [1][19][14][15][5][3].

1.1.3 Unsupervised Learning

Unsupervised learning is a setting in which no labels are provided, where the algorithm

is expected to learn patterns in the data based on similarity metrics. The most

common clustering algorithms are k -means, hierarchical clustering, and Gaussian

mixture models, etc. On higher dimensional data like images, the first step is to

2



Figure 1.2: Semi supervised learning. Credits: https://amitness.com/2020/07/semi-
supervised-learning/

project the data in a lower dimensional latent space. Clustering is then performed on

this data.

1.2 Learning domain-independent Learning

Another hindrance in enhancing the scalability of machine learning techniques is that

models understand multiple image datasets independently by learning separate mod-

els for every visual domain. Furthermore, these restrictions are amplified for medical

datasets due to factors like scarcity, the rarity of the disease, the risk of data misuse,

and lack of data-sharing incentives. Recently, research in the field of multi-domain

learning [29][30] is proliferating guided by the aim of learning universal representations

and feature extractors that can operate over several different visual domains. The

primary goal is to develop models that can compactly represent multiple domains

by leveraging associative knowledge between low and mid-level features of visually

distinct domains. The underlying working principle behind these models is that mul-

tiple domains should share majority of their parameters except for certain weights,

named adapters, that depend on the distribution of individual domains. Details of

the multi-domain setup is described in detail in subsequent sections.

We jointly tackle the problem of scarce annotations and multi-domain training on

medical datasets from distinct visual domains. We perform semi-supervised training

on multiple domains by learning generalized representations using a vast majority of
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shared parameters and a few domain-specific adapters. Essentially, this is equivalent

to learning a single framework for multiple domains with the addition of a very few

dependent parameters. By virtue of training only a singular universal model on

multiple domains, a major merit of the proposed method is that we can use a single

model for scarce datasets corresponding to distinct organs and tissues or obtained

from different laboratories using disparate preparation methods. To demonstrate

this, we perform our experiments on the task of image classification for five medical

datasets spanning over breast, cervical, and colorectal cancer which are collected for

either tissue (Histology) or cell (cytology) study. Our contributions in this thesis are

three-fold:

• To the best of our knowledge, our approach is the first to perform medical image

classification on a distinct variety of datasets under the multi-domain setting.

• Moreover, we challenge ourselves by introducing restrictions on annotated data

collected from multiple domains, operating in a semi-supervised setting.

• We perform several experiments on different architectures of adapters to analyse

and compare their behaviour in the presence of limited supervision.

The report is divided into 6 sections. Section 2 contains a brief description of previous

works in the field of domain adaptation for medical data. Section 3 describes the pro-

posed methodology of our proposed framework. Section 4 contains the Experimental

Setup and Implementation details. In Section 5, we present the qualitative and quan-

titative results of our model. Finally, In section 6 we summarize the Self-supervised

multi-domain learning framework.
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Chapter 2

Related Work

In this section, we review prior works on multi-domain learning in medical data.

Although, there has been remarkable research in learning models for multiple

domains in medical data [7][34][20][23], we argue that the methodology and goals

of the proposed frameworks are significantly different from ours. We would like to

indicate that learning models for multiple domains and a multi-domain setting are

substantially different. For example, [6] introduced a framework for early Alzheimer’s

disease detection that utilize transfer learning to simultaneously learn the task and

leverage information from multi-auxiliary domains to excel on the target domain.

In the same spirit, [26] considers a self-supervised domain adaptation setting using

multiple datasets for glaucoma detection. The above methods mainly focus on a

transfer learning and domain adaptation pipeline that assume a certain degree of

similarity between visual domains related to one body part. In contrast, our model

is capable of operating without any assumptions about similarities between datasets

as we consider domains from different body parts and sources to perform different

image classification tasks. We would like to point out that the above works perform

detection of only a single disease, implying that detection of different disease would

require us to train a completely new model. Contrarily, our multi-domain universal

models can perform detection of different diseases using a single universal model with

only a few domain-specific adapters. Hence, this setup evinces itself to be extremely

practical in a real life scenario where it is unfeasible to perpetually keep shifting

between neural networks for different types of diagnosis.
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Chapter 3

Proposed Methodology

Under the multi-domain setting, we aim to train neural networks that share a majority

of their parameters across domains with exception of a few adaptive ones denoted by

θd for d = 1, 2, ...D, where D is the total number of domains. We denote input images

of each domain by Xd ∈ RH×W×3, projected onto a feature space Fd ∈ RHf×Wf×Cf by

a convolutional feature extractor EΘ : RH×W×3 → RHf×Wf×Cf . Here, Θ = {θd ∪ ψ}
denotes the complete set of domain-dependent θd and independent parameters ψ for

the feature extractor, such that θd ∩ ψ = ∅. Subsequently, we obtain the labels for

an image from domain d using a domain-specific linear classifier Lφd : RHf×Wf×Cf →
R|C|d , where |C|d is the number of categories in the domain. It is assumed that

Ld consists of a softmax layer which returns a normalized probability distribution

Pd = Ld(E(Xd)) over all classes in domain d. For notational convenience, we drop

the parameters Θd and φd from the feature extractor and the linear classifier. To

sum up, the domain-agnostic parameters are denoted by ψ while θd and φd are the

domain-specific parameters.

3.1 Residual Adapters

A ResNet block [12] is a function rw : RH×W×C → RH×W×C parametrised by weights

w that performs the operation rw(x) = x + w ? x. Here, the operation ? consists of

convolutional with batch normalization and ReLU function.

The primary idea behind residual adapters [29] is to modify the conventional

residual network to contain domain-specific parameters. Naturally, to adapt a resid-

ual block ri,w,d for domain d, its parameters w need to be replaced by domain-specific
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weights θi,d, i = 1, 2, ...|R|, where |R| is the number of residual adapters in the univer-

sal neural network. In order to restrict the number of domain-dependent parameters,

the convolution layers in θd are implemented in the form of a filter bank of size 1× 1.

Apart from convolution filters, the scaling parameters of batch-normalization are also

incorporated in the residual adapter modules by virtue of normalized outputs and

stable training. It is worth noting that batch-normalization inherently consists of

domain-specific scaling parameters that adds a certain degree of adaptation in the

network. These residual adapters can be positioned in two ways [30] with respect to

the domain-agnostic parameters: parallel and in series. We direct the readers to [30]

for a thorough analysis of parallel and series residual adapters.

We discuss these two architectural positions in detail in this section. To further

our explanation, we define a diagonal convolution operator (Equation 3.1) as done in

[30]. Here, an operator diag(F (A)) ∈ RF×F×C×D converts a matrix A ∈ RC×D to

a bank of diagonal filters. This operator transforms the matrix A into a 1 × 1 filter

bank embedded as the central element of a larger L × L filter bank by appending

zeros around it.

diag(F (A))abcd = Adca = b =
(F − 1)

2
+ 10otherwise (3.1)

Here, F , C, and D denotes the filter size, input channels and output channels

respectively,

3.1.1 Parallel Adapters

In this configuration, the adapter modules are placed parallel to domain-independent

modules as shown in Figure. The output of ψ ∈ RF×F×C×D and the adapter module

are computed in parallel and further added. Following this process, the output of a

parallel residual adapter is given by Equation 3.2.

y = ψ ? x+ diag1(θd) ? x (3.2)

y = (ψ + diag1(θd)) ? x (3.3)

7



Figure 3.1: Series and parallel residual adapters. The blue colored blocks denote
domain-dependent trainable parameters.

3.1.2 Series adapters

Residual adapters in the series configuration operate after domain-independent filter

banks ψ ∈ RF×F×C×D. The complete formulation of series adapters is given by

Equation 3.4.

y = ρ(x;α) = x + diag1(α) ∗ x (3.4)

ρ(x;α) = diag1(I + α) ∗ x (3.5)

3.2 Multi-domain semi-supervised training

Let us denote the pretext task/self-supervised task and the downstream task by Tp
and Tm respectively. In this paper, we consider the downstream task to be multi-class

image classification. Under this premise, a suitable pretext task performs auxiliary

classification on d domains over |C|pd categories obtained inherently from unlabeled

data. We denote the datasets corresponding to pretext tasks and downstream tasks for
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domain d by Dp,d = {X p,d
i ,Yp,di }

Np,d

i=1 and Dm,d = {Xm,d
i ,Ym,di }

Nm,d

i=1 respectively. Since,

we operate in a semi-supervised setup, we assume that a few annotated samples are

available to us for each domain such that Np,d >> Nm,d∀d. These annotated samples

for task Tm are further used to finetune the parameters of the network trained on the

pretext task Tp.
We consider a neural network for image classification consisting of convolutional

and fully-connected layers given by N (·) = Ld(E(·)) such that E = {θd ∪ ψ}. In

multi-domain learning works [29][30], the domain-agnostic parameters ψ are obtained

from a model pre-trained on a large dataset such as ImageNet while the domain-

specific parameters are finetuned on corresponding domains. This ensures that a

predominant number of parameters of the neural network are shared across domains.

In the same spirit, we finetune only the domain-specific parameters θd, φd while solving

both Tp and Tm, while the domain-independent parameters ψ remain frozen and

shared amongst all domains throughout the training process.

The entire training setup is demonstrated by Figure 3.2. Initially, we train the

network N to solve the pretext task Tp using Dp,d. In order to perform the classifica-

tion based pretext task, we introduce a different linear classifier ˆLφd′ : RHf×Wf×Cf →
R|C|

p
d , which provides a probability distribution over auxiliary categories. The output

of the network for the pretext task is obtained as
ˆYp,di = L̂(E(X p,d

i )). Thereafter, the

domain-specific parameters for the pretext task Θd′ = θd ∪φd′ are updated according

to Equation 3.6, where Lp,d(·, ·) stands for cross-entropy loss for each domain and

Bp,d stands for the size of a minibatch.

Θd′ ← Θd′ − η
Bp,d∑
i=1

dLp,d(Ŷp,di ,Yp,di )

dΘd

,∀d (3.6)

By training our network on a befitting pretext task, we have ensured that our

network comprises a meaningful semantic representation capable of supplementing

knowledge for a downstream task. Consequently, the final step is to finetune only

the parameters of the classification layer Lφd on the downstream task using a few

annotated samples and update its parameters using Equation 3.7. Here, Ym,di =

L(E(Xm,d
i )) denotes the output of the downstream classification task and Lm,d(·, ·)

stands for cross-entropy loss for corresponding domains.

φd ← φd − η
Bm,d∑
i=1

dLm,d(Ŷm,di ,Ym,di )

dφd
,∀d (3.7)
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Figure 3.2: Overview of the Multi-domain semi-supervised setup. The domain-specific
parameters for a domain are chosen from the union of all parameters given a domain
index d. The green and red dashed arrows denote trainable and frozen domain-
dependent parameters respectively.

During testing, domain-specific parameters θd ∪ φd corresponding to the domain

d of the input image are retrieved from stored models to perform classification over

|Cd| categories.

Algorithm 1 Training Algorithm

Stage 1: Self supervised training
Input: Pre-trained Resnet-26 model. Initialise parameters Θd′.
1: for epoch = 1 to epochs do
2: Rotate X p,d

i by an arbitrary angle from the set Y p,d
i = {0, 90, 180, 270}.

3:
ˆYp,di = L̂(E(X p,d

i ));
4: Update Θd′ using Equation 3.6;
5: end for

Stage 2: Fine-tuning
Input: Frozen parameters θd. Initialise parameters φd.
6: for epoch = 1 to epochs do
7: Ym,di = L(E(Xm,d

i ));
8: Update φd using Equation 3.7;
9: end for

10



Chapter 4

Experiments

4.1 Datasets

We perform experiments on five distinct datasets related to various types of cancers

namely breast, colorectal and cervical. The data are collected by two techniques, i.e.

Histology and Cytology.

• Mendeley: [13] This dataset consists of total 963 liquid based cytology pap

smear images divided into four classes (|C|d = 4) of pre-cancerous and cancerous

lesions of cervical cancer namely High squamous intra-epithelial lesion, Low

squamous intra-epithelial lesion, Negative for Intraepithelial malignancy, and

Squamous cell carcinoma.

• Herlev: [17] This dataset contains 917 images of healthy and cancerous pap

smears categorized into seven classes (|C|d = 7) which are carcinoma, light

dysplastic, moderate dysplastic, normal columnar, normal intermediate, normal

superficiel, and severe dysplastic.

• SIPaKMeD: [28] This dataset is comprised of 4049 images pap smear slides

divided into five categories (|C|d = 5) containing normal, abnormal and benign

cells specifically the superficial-intermediate, parabasal , koilocytotic, dyske-

tarotic, and metaplastic cells.

• Kather: [18] This dataset is a collection of histological images of human col-

orectal cancer sub-divided into eight classes (|C|d = 8) of benign and malignant

cancer.
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• BreakHis: [35] This dataset contains 9,109 microscopic images of benign and

malignant breast tumor tissue further subdivided into eight categories. How-

ever, for our experiments, we consider only two classes (|C|d = 2) due to high

inter-class similarity.

4.2 Pretext task

We choose rotation angle prediction (RotNet) [8] as the self-supervision task for our

experiments. We rotate the image arbitarily by choosing one of the angles out of

the set A = {0, 90, 180, 270}. This implies that |C|pd = 4, ∀d. The parameters Θd′
are trained to predict the angle by which the input image has been rotated. For all

domains, we trained this proxy task for 200 epochs.

4.3 Architecture

We consider the baseline model to be a ResNet module in the 26-layer configuration

as done in [30]. The network consists of 3 blocks of convolutional layers that output

features containing 64, 128 and 256 channels respectively. Each block further consists

of 4 residual blocks (|R| = 4) each, containing a domain-independent 3 × 3 convo-

lutional layers followed by 1× 1 domain-specific filter banks with a skip connection.

The spatial resolution of the data is halved from a block to the next. The residual

adapters are distributed throughout all the feature extractors modules which are fol-

lowed by domain-specific classifiers. The model in Figure 3.2 depicts only one such

convolutional block for ease of visualization of the training method.

4.4 Training details

We use the 80:20 training and validation set split for all the five datasets. We train

the entire model using stochastic gradient optimization with a learning rate of 10−3,

momentum and weight decay. In contrast to [30], we do not use dropout in any of

the residual adapters. We perform finetuning on the domain-specific classifier for 200

epochs for each domain. The training algorithm is mentioned in Algorithm 1.
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Chapter 5

Results

5.1 Results and Discussion

In this section, we discuss the results obtained by our proposed methodology on the

five datasets mentioned in Section 4.1. For every dataset we finetune the domain-

specific parameters of the network with 10/25/50/100 labeled samples per class. In

Fig 5.1, we present the performance of parallel residual adapters in the universal

model on each dataset while varying the number of samples. Table 5.1 demonstrates

the results of our universal model on all five medical datasets considered in this

paper. We perform experiments on two architectural possibilities of the residual

adapters: series and parallel and compare their performance. To demonstrate the

generalization capability of our model under the constraints on labeled data, we also

compare our results with the fully-supervised multi-modal training setup. We also

provide an extensive qualitative visualisation of the performance of our models in the

supplementary material.

Discussion: From Table 5.1, we observe that our model provides an accuracy that

is almost equivalent to the performance of a fully-supervised model, inspite of severe

data scarcity. As expected, the performance of all models increase with the introduc-

tion of more training samples. In some cases, addition of 15-25 samples provides a

sharp boost in accuracies. We observe that in most cases the accuracy obtained with

only 100 samples is appreciably close to model with full supervision. Interestingly, in

many cases, the accuracy provided by some models with just 100 samples is better

than full supervision.

13



Dataset Model
Number of samples

10 25 50 100 Full

Mendeley
Parallel 76.52± 1.04 91.15± 0.52 97.40± 0.41 98.44± 0.52 98.96± 0.07
Series 82.21± 1.12 91.67± 1.04 96.35± 0.52 98.96± 1.04 97.40± 1.86

Kather
Parallel 78.63± 0.61 90.63± 0.81 93.75± 1.41 96.88± 0.25 96.87± 2.02
Series 74.60± 0.10 81.45± 0.20 88.21± 0.30 90.83± 0.20 93.75± 0.41

SipaKMed
Parallel 75.63± 0.38 90.63± 0.13 93.75± 0.28 94.13± 0.48 94.63± 1.63
Series 78.13± 1.30 89.84± 0.25 92.19± 1.06 96.88± 0.88 95.25± 1.50

BreakHis
Parallel 43.75± 0.07 84.38± 0.52 87.50± 0.88 92.49± 0.30 92.97± 2.35
Series 59.38± 0.02 84.64± 2.34 96.88± 0.21 96.88± 1.04 97.73± 0.85

Herlev
Parallel 50.63± 1.25 87.50± 2.13 93.75± 1.25 98.86± 0.63 98.66± 0.29
Series 53.13± 1.48 75.00± 2.28 92.19± 0.63 96.36± 1.24 97.32± 0.85

Table 5.1: Results of the parallel and series adapters on five medical datasets by
varying the number of samples per class. We report the accuracies in % of each model
under different cases of limited supervision. ”Full” denotes training with the complete
training set. We also report the deviation of accuracy throughout the validation set.
The greatest value in reach row is highlighted in bold.

5.2 Qualitative results

We provide a qualitative visualisation of results. For every dataset, we provide t-SNE

plots and a a Grad-CAM analysis for images of each class. t-Distributed Stochastic

Neighbor Embedding (t-SNE) [37] is an excellent tool to visualise high dimensional

data and analyse similarities between data points. Gradient-weighted class activation

mapping (Grad-CAM) [33] primarily uses the gradients of the target class at the final

convolution layer to synthesize an intermediate localization map which highlights the

most important regions in the image. The Grad-CAM plots effectively display the

regions which contribute the most in prediction of a particular target-class. In Figure

5.2, 5.3, 5.4, ??, 5.5, we present the t-SNE and Grad-CAM visualisation for all the

datasets individually.
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Figure 5.1: Comparison of accuracy of parallel adapters by varying the number of
samples per class. x-axis denotes the number of samples and y-axis denotes accuracy
of the model. The green star denotes the accuracy of the model under full supervision.

Figure 5.2: t-SNE and Grad-CAM visualisation for the Kather Dataset
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Figure 5.3: t-SNE and Grad-CAM visualisation for the SipakMed Dataset

Figure 5.4: t-SNE and Grad-CAM visualisation for the Mendeley Dataset
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Figure 5.5: t-SNE and Grad-CAM visualisation for the Breakhis Dataset

17



Chapter 6

Conclusion

In this thesis, we proposed the concept of semi-supervised multi-domain learning in

the domain of medical images. Our aim is to tackle two major restrictions that hin-

der the growth of machine learning in the medical domain, namely data scarcity and

domain-dependence of models. To accomplish this, we introduce a universal family of

models that share majority of their parameters except a few domain-specific parame-

ters termed as adapters that leverage information from pretext tasks to perform image

classification. We perform extensive experiments on five medical image datasets from

different sub-domains namely, Medeley, Kather, SipakMed, BreakHis, and Herlev

spanning breast, colorectal, and cervical cancer. Ultimately, we demonstrate that the

performace of our models trained with as few as 100 samples is congruous with those

trained under full supervision. This opens up riveting and exciting possibilities for

a semi-supervised multi-domain setup for medical images under multiple scenarios.

In the future, we wish to extend this setup to dense prediction tasks like semantic

segmentation and object detection for tumor/lesion detection.
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