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ABSTRACT

Sketch Based Image Retrieval (SBIR) allows a user to search images with a free-

hand sketch. A common bottleneck in SBIR is the scarcity of data occurring due

to the laborious task of drawing sketches. This motivates the concept of Zero-shot

learning, where a learner observes samples from classes that were not observed dur-

ing training. In Zero-shot sketch-based image retrieval (ZS-SBIR), human sketches

are used as queries to conduct retrieval of photos from unseen categories. The task

of ZS-SBIR is challenging due to the fine-grained nature of the task, large domain

gap between sketches and images and high intra-class variance of many categories.

In this thesis, we propose a novel ZS-SBIR framework performing a bi-level domain

adaptation of the sketch and image features using adversarial learning. This frame-

work alleviates the above problems by providing modality-independent features and

a class-discriminative latent space. Experimental results on the extended versions of

the Sketchy, TU-Berlin, and QuickDraw datasets exhibit sharp improvements over

the state-of-the-art. This manuscript is currently under review.

Keywords: Sketch Based Image Retrieval, Zero-shot learning, Domain Adaptation
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Chapter 1

Introduction

1.1 Sketch Based Image Retrieval

Machine Learning has slowly become a ubiquitous component in modern software.

Moreover, image content on the internet is increasing exponentially with the advent

of social media and e-commerce. Most users search for an image using a textual

description or by providing another image similar to the desired image. But, it is

often difficult to describe images using a textual description but finding a visual

equivalent is easier. Finding images belonging to the same domain as the desired

image is often tedious. This motivates the concept of sketches as a visual query as

they can be easily drawn on a touch-based device.

Sketch Based Image Retrieval (SBIR) is the task of retrieving natural images corre-

sponding to a hand drawn sketch. Due to the high variance in man-made sketches and

domain-sensitivity of machine learning models, classification based image retrieval is

prone to highly erroneous results. Thus, SBIR framework should learn to associate

salient components in the sketch with the corresponding components in the image

having similar characteristics.

1.2 Zero-Shot Learning

Obtaining enough hand-made sketches that capture all variations for all possible

objects in the world is arduous task. This calls for Zero-shot learning, a setup in

which samples from unseen classes are presented to the learner. Naturally, some sort

of side information is required for the zero-shot classes is required. This information

can be available as:
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Figure 1.1: Given a cluttered feature space for images and sketches, a sub-optimal
domain alignment fails to produce a discriminative latent space which is affected by
problems like hubness and negative transfer (blue region). Feature adaptation at
multiple feature scales together with a discriminative feature space learning ensures
that zero-shot testing can be performed well in SketRet (gray region).

• Attributes: Certain attributes or class names are available. Eg: ”black and

white stripes”, ”long neck” etc.

• Textual description: Categories or images are associated with a sentence

which aptly describes the content.

• Class-class similarity: The learner learns a continuous embedding for the

categories. It maps the unseen category to the nearest class to provide a pre-

diction.

For ZS-SBIR, semantic side information is available as class attributes/labels. One

cannot trivially map the images/sketches to the semantic space as this will neglect

the complex distributions of different local regions within the images. In ZS-SBIR,

only natural images belonging to the unseen classes are available. However, in rea-

time image retrieval, one cannot differentiate between seen and unseen examples.

The availability of both seen and unseen classes will make the retrieval task more

confusing. This setting is called Generalized Zero-shot SBIR (GZS-SBIR). The tasks

of ZS-SBIR and GZS-SBIR are extremely challenging due to the following:

• Variance: As sketches are drawn by various artists, the ZS-SBIR models need

to overcome a substantial within-category variance.
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• Domain-gap: Besides, the domain gap between sketches and images is consid-

erable, given the disparity in spectral, spatial, and texture properties between

the two modalities. Therefore, feature space should not be forcefully aligned;

otherwise, the model becomes vulnerable to the negative transfer of irrelevant

knowledge.

• Hubness: Another critical challenge in ZS-SBIR is the hubness problem, which

occurs when a model has a training bias and retrieves images only from a subset

of the available categories. This occurs as some embedding vectors of images

(also called as “hubs”) appear in the nearest neighborhood of many test query

sketches.

In this thesis, we introduce SketRet, a discriminative deep framework for perform-

ing ZS-SBIR. We combat the negative transfer and hubness problems of ZS-SBIR

by performing an improved feature adaptation while designing an insightful semantic

projection network combining a neural network and a Graph Convolutional Network

(CNN) which brings in a structural semantic consistency of the latent features. Ex-

tensive experiments are conducted on the Sketchy (Extended), TU-Berlin (Extended),

and the QuickDraw (Extended) datasets by exploring a number of semantic spaces

and feature backbones.

The report is divided into 6 sections. Section 2 contains a brief description of previous

works in the field of SBIR. Section 3 describes the proposed methodology of our

SketRet framework. Section 4 contains the Experimental Setup and Implementation

details. In Section 5, we present the qualitative and quantitative results of our model.

Finally, In section 6 we summarize the SketRet framework.
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Chapter 2

Related Work

In this section, we review prior works on zero-shot SBIR.

As already stated, the major obstacle in solving the SBIR task stems from the

fact that the distributions difference between sketch and image data is exceedingly

large. Early works in this area include conventional pattern recognition methods for

retrieval by engineering hand-crafted visual features [14, 22]. The proposition be-

hind such approaches is to solve the SBIR problem by obtaining the edge-map of the

natural images and to further match them with sketches arising from the same cate-

gories. As expected, the low-level SIFT [18], SURF [1], or HoG [4] based descriptors

are unable to properly encode the regional variations of the sketch data, resulting

in an inferior cross-modal matching. The performance measures of deep CNN based

SBIR models have witnessed a massive enhancement lately, thanks to the data-driven

feature learning capabilities of CNN. Since the retrieval performance benefits from a

discriminative feature space, several endeavors rely on distance metric learning strate-

gies like contrastive-loss [3], triplet-loss [23], and HOLEF-based loss [26], to name a

few. As opposed to the real-valued feature embedding, hash-code based representa-

tions are also considered in this regard which offers a trade-off between performance

and storage [16]. The generative models for cross-modal style transfer are also ex-

plored [9] in this regard.

Zero-shot Sketch-based Image Retrieval (ZS-SBIR): The ZS-SBIR literature

consists of both the discriminative and generative deep learning based techniques.

Under the generative umbrella, [24] proposes a hashing network for the semantic

knowledge reconstruction (ZSIH). Similarly, [27] introduces a conditional generative
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model for ZS-SBIR based on variational learning. The stacked auto-encoder (SAN)

method proposed in [20] deploys a generative framework based on stacked-adversarial

networks within a Siamese architecture. The paired cyclic consistency loss proposed

in SEM-PCYC [7, 8] helps in aligning the sketches and images in an encoded se-

mantic space using adversarial training. On a different note, [9] borrows ideas from

the style transfer literature and develops a style-guided image to image translation

model for ZS-SBIR. On the other hand, the discriminative model of [6] uses a triplet-

based network to solve the task at hand. [10] highlights the implications of data and

class imbalance in ZS-SBIR and introduces an adaptive margin diversity regularizer

(AMD-reg) to combat the same. While all the techniques showcase their performance

on ZS-SBIR, a few works [7, 8, 20] also demonstrate their experiments for the GZS-

SBIR setting.
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Chapter 3

Proposed Methodology

3.1 Preliminaries

Let Zs = {As,Bs, Cs,Ws} be a multi-modal training dataset consisting of images As

and sketches Bs obtained from the |Cs| seen visual categories. Additionally, we have

access to semantic side informationWs which typically corresponds to the distributed

word-vector embeddings of the individual category names. During inference, image

and sketch data Zu = {Au,Bu} from a non-overlapping set of previously unseen

classes Cu are considered (Cu ∩ Cs = ∅) in the zero shot SBIR setup.

We deal with the unpaired dataset setting in Zs where the number of sketch and image

instances in As and Bs are different: {asi}Ni=1 ∈ As and {bsi}Mi=1 ∈ Bs. The model is

trained to reduce the distribution mismatch between As and Bs and subsequently to

transfer the knowledge from Zs to Zu with the help of the semantic information Ws.

The testing phase concerns the retrieval of images with similar semantic categories

fromAu given the sketch queries from Bu. In contrast to ZS-SBIR, GZS-SBIR assumes

the presence of images from As ∪ Au during testing for unseen-class sketch queries

coming from Bu, however, only Zs is used during training in both the cases.

3.2 Overview

The goal of SketRet is to align the images and sketches from the same class in a

semantically meaningful shared latent space. It is composed of cross-modal triplets

where the sketch data from Bs serves as the anchor (α) while the positive (p) and

negative (n) counterparts are selected from As (Fig. 3.1). We denote the label and

semantic prototype for (α, p) by y+ and w+ while y− is the label for n, respectively.
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Figure 3.1: A depicton of our SketRet architecture. The images and sketches undergo
two rounds of domain adaptation at the outputs of (φatt, ψatt) and (φ, ψ), respectively.
The cross-modal encoder-decoder modules Vα = (Veα,Vdα) and Vp = (Vep ,Vdp ) (light
blue and light green arrows) aid in learning improved cross-modal features. The
semantic projection network g(·) (light orange arrows) embeds the prototypes and
the semantic topology graph into the latent space. At test time, images and sketches
from the unseen classes are projected into the latent space through φ(·) and ψ(·) and
the nearest neighbor based retrieval subsequently takes place.
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The feature networks for As and Bs are defined by φ(·) and ψ(·) which are convo-

lutional neural networks with integrated attention sub-networks φatt(·) and ψatt(·)
(φatt ⊂ φ, ψatt ⊂ ψ). The attention block outputs are simultaneously projected to the

local adversarial domain classifier l(·) to highlight spatially indistinct features of the

same-class samples from As and Bs and to the shared latent space.

We further introduce two cross-modal feature reconstruction modules (Vα(·),Vp(·))
which aim to reconstruct φ(p) from ψatt(α) and ψ(α) from φatt(p) through variational

bottlenecks. On the other hand, the outputs of φ(·) and ψ(·) need to be synchronized

for defining the shared embedding space. In this regard, the global domain adap-

tation on φ(p/n) and ψ(α) is carried out considering a combination of the domain

classifier f(·) and a multi-class category classifier h(·). A semantic sub-network g(·, ·)
comprising of an MLP g1(·) and a graph CNN g2(·, ·) is used to non-linearly project

the semantic vectors into the shared space.

Loss Functions: There are mainly three learning objectives that together govern

the training of SketRet, namely, (i) domain loss (Ldomain), (ii) cross-model triplet

loss (Ltriplet), and (iii) semantic loss (Lsemantic), respectively. The loss functions are

detailed in the following.

3.3 Domain Losses

To adapt the features ofAs and Bs, we aspire the latent visual embeddings to be driven

by shared region-level features and to suppress the effects of irrelevant domain-specific

concepts. In our SketRet framework, a two-level feature adaptation is carried out to

accomplish the fine-grained domain alignment between As and Bs. Especially, we

gradually ensure the local domain invariance by first learning shared spatial features

at the outputs of φatt(·) and ψatt(·) followed by globally aligning the latent visual

embeddings obtained from ψ(·) and φ(·), respectively. Local feature adaptation may

be affected by the large data variation within each of the modalities. Hence, we

introduce two variational encoder-decoder modules connecting φatt(p) to ψ(α) and

ψatt(α) to φ(p), respectively, which contribute to maximizing the correlation between

the bi-modal features through cross-modal feature reconstruction. It is assured that

the domain losses leverage the class labels effectively.
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3.3.1 Global Adaptation

The global domain adaptation loss in SketRet follows an adversarial training strat-

egy where the discriminator tries to minimize the domain confusion and the feature

extractors aim to maximize the domain disagreements in the shared latent space pro-

duced by (φ, ψ). This, in turn, makes the latent space agnostic to both the modalities.

We note that the coarse-level distribution matching between the modalities using only

the domain discriminator f may induce a trivial solution where all the samples may

be confined in a few modes. As a remedy, we need to ensure that the samples main-

tain the class labels in the adapted space. Accordingly, the discriminator in SketRet

is defined in terms of the domain classifier f and the label predictor h, while φ and

ψ serve as the feature extractors.

As per the principle, f considers the initial domain labels for ψ(α) and (φ(p), φ(n)) to

be 1 and 0, respectively. Likewise, the global domain loss Lglobaldom and the multi-class

classification loss Lclass are defined as,

Lglobaldom = Eα∈Bs,p,n∈As [log(1− f(ψ(α))) + log f(φ(p)) + log f(φ(n))] (3.1)

Lclass = Eα∈Bs,p,n∈As [−y+ log h(ψ(α))− y+ log h(φ(p))− y− log h(φ(n))] (3.2)

The corresponding adversarial objective function is then:

L1 = min
φ,ψ,h

max
f
Lglobaldom + Lclass (3.3)

3.3.2 Local Adaptation

The cost function for the local adaptation (L2) is defined in Eq. 3.4 and it encourages

the learning of abstract local spatial concepts common to As and Bs. This is done

by adversarially adapting the spatially average-pooled feature-map outputs of φatt(p)

and ψatt(α). For example, if the output dimensionality of ψatt and φatt is 512× 7× 7,

we note that the pooled feature-map has a spatial resolution of 7× 7 and each of the

49 cells summarizes the properties of different local regions of the input data.

L2 = min
φatt,ψatt

max
l

Eα∈Bs,p∈As [log(1− l(ψatt(α))) + log l(φatt(p))] (3.4)

In the adversarial setup, l(·) denotes the binary discriminator while φatt and ψatt

represent the feature encoders, respectively. Since α and p share the category label,

the domain labels are considered to be 1 for sketches and 0 for images.
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3.3.3 Cross-modal Reconstruction

Although L2 adapts the intermediate feature maps of As and Bs, however, it does

not guarantee that the feature maps of a given modality are aware of the final latent

feature distributions for the other modality. In order to better equip the feature maps

with the cross-modal information, we introduce the classwise cross-modal reconstruc-

tion loss using generative modelling. Specifically, the cross-modal encoder-decoder

modules Vα = (Veα,Vdα) and Vp = (Vep ,Vdp ) reconstruct the latent feature embedding

of sketch anchor ψ(α) given the outcome of φatt(p) and vice-versa. Both Veα and Vep
are designed to be stochastic encoders and their outputs follow the standard normal

distributions as per the principles of variational learning. We define the respective

loss functions as follows, where DKL is the Kullback-Leibler divergence.

LKL(V , F, x) = DKL(q(V(F (x)))‖N (0, 1)) (3.5)

L1
rec = Vp(φatt(p))− ψ(α)2 + LKL(Vep , φatt, p) (3.6)

L2
rec = Vα(ψatt(α))− φ(p)2 + LKL(Veα, ψatt, α) (3.7)

L3 = min
Vp,Vα,φ,ψ

Eα∈Bs,p∈As [L1
rec + L2

rec] (3.8)

The overall domain loss function is written as,

Ldomain = L1 + L2 + L3 (3.9)

3.4 Cross modal triplet loss

While the domain losses contribute towards making the two domains highly indis-

tinguishable in the latent space, we simultaneously introduce a cross-modality triplet

loss function for the triads {(ψ(α), φ(p), φ(n))} to ensure that the images and sketches

form class-wise dense clusters in the latent space. Lclass alone may not be able to

guarantee this, considering the high intra-class variance for both the modalities and

a high degree of data imbalance inherent to the task itself. Maintaining a margin

among the class boundaries helps in combating both the problems.

By definition, the cross-modal triplet loss Ltriplet aims to bring the same class sample

φ(p) from the image modality closer to a given sketch anchor ψ(α) while pushing the
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negative image sample φ(n) far from ψ(α) at least by a fixed margin of µ as per Eq.

3.10 using the Euclidean distance metric D.

Ltriplet = min
φ,ψ

Eα∈Bs,p,n∈As [max{0, µ+D(ψ(α), φ(p))−D(ψ(α), φ(n))}] (3.10)

We note that the selection of triads {(α, p, n)} is carried out carefully in order to

avoid any learning bias. Since we aspire to construct a dense cluster in the latent

space for each of the classes in Cs, sketches and images of the same class which are

far from each other should be brought closer. Hence, we ensure to continuously select

a p which is away from α among the nearest neighbors in the image feature space.

Similarly while selecting n, we ensure to select the pairs {(α, n)} which are close in

the feature space but share different annotations. We integrate this strategy with

offline random sampling to construct the pool of triads.

3.5 Semantic Loss

The semantic side information is obtained by taking various combinations of text-

based and hierarchical word embeddings for the category names. For the distributed

word-vector models, we consider the pre-trained Word2Vec [19], GloVe [21] , and

fasttext [2] while the Jiang-Conrath [15] and path similarity are utilized as the hier-

archical encoding.

We project the semantic prototypes Ws together with the topology information

of the original semantic space to the shared latent space. The topology informa-

tion, which is found to bring in a regularization effect into the latent space, is en-

capsulated in the weighted semantic adjacency matrix Γ|Cs|×|Cs| defined in terms of

the pairwise cosine dissimilarity among the semantic prototypes of the seen classes.

The joint information is found to perform better zero-shot inference than the se-

mantic prototypes alone. Ideally, the outputs of g1(Ws) and g2(Γ,Ws) are con-

catenated and subsequently projected onto the latent space by another MLP g3(·):
g(Ws,Γ) = g3([g1(Ws), g2(Γ,Ws)]) where [·, ·] defines the vector concatenation op-

eration. The semantic reconstruction loss brings φ(p) and ψ(α) closer to the pro-

jected class embedding g(w+,Γ) while maximizing the divergence between φ(n) and

g(w+,Γ). This is accomplished through the semantic loss Lsemantic as follows:
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Lsemantic = min
g,φ,ψ

E[S(ψ(α), g(w+,Γ), 1) + S(φ(p), g(w+,Γ), 1) + S(φ(n), g(w+,Γ), 0)]

(3.11)

where the distance S between the vectors (x,y) is defined in terms of the cosine

distance for a given threshold t as, S(x,y, t) = 1
2
(t− xyT

x y ).

The overall objective function for the SketRet framework can now be put forward as:

Ltotal = Ldomain + Ltriplet + Lsemantic (3.12)

12



Chapter 4

Experiments

4.1 Datasets

We validate the efficacy of the SketRet framework by performing experiments on the

benchmark Sketchy-extended [23], TU Berlin-extended (TUB) [11], and the newly

introduced QuickDraw-extended [6] datasets, respectively. The Sketchy dataset con-

sists of 125 different categories of unpaired sketch and photo images. We use the two

conventional train-test splits on the Sketchy dataset. In the first split (S1) we ran-

domly select 25 classes as the unseen test data, while in the second split (S2) we use

|Cs| : |Cu| = 104 : 21 as mentioned in [27] where the 21 unseen classes are carefully cho-

sen not to be part of ImageNet [5]. The TU-Berlin dataset, on the other hand, contains

250 different classes of images and sketches and |Cs| : |Cu| = 220 : 30 is considered

randomly such that the classes in Cu contain at least 400 images each. Finally, the

large-scale QuickDraw dataset has samples from 110 classes and |Cs| : |Cu| = 80 : 30

is considered randomly.

4.2 Evaluation Protocol

We select around 5000 triplets in each training iteration based on the aforementioned

triplet-mining protocol. µ = 1 is selected for the triplet loss in Eq. 3.10. We use

batch-normalization and leaky-ReLU non-linearity after each of the newly introduced

layers to ensure a stable training. Ltotal is optimized using the stochastic gradient

descent (SGD) with momentum as the optimizer with a mini-batch size of 32. An

initial learning rate of 0.0001 and a momentum of 0.9 are set. We find that Ltotal
converges for all the datasets within 50 iterations. We report the performance of
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SketRet in terms of mAP@all (mean average precision), mAP@200, P@100, and

P@200, respectively, where P stands for precision.

4.3 Implementation Details

The feature backbone networks φ(·) and ψ(·) are the ImageNet pre-trained VGG-16

model [25]. Two modality specific spatial attention learning modules consisting of

convolution kernels with sigmoid non-linearity are applied on the outputs of the final

convolution layer (conv-5) of φ and ψ, and the networks upto the attention blocks

are denoted as φatt(·) and ψatt(·) each producing 512 feature maps of size 7× 7. The

attention blocks are eventually followed by three new dense layers which project the

attended feature maps onto the final latent space with dimensions R256. Besides, a

spatial average pooling across the channels is applied on the outputs of (φatt, ψatt) to

obtain a single channel feature map of resolution 7 × 7. The encoder and decoder

modules of Vα and Vp are designed in terms of a single dense layer each with an

encoder space dimensionality of 128.

The local domain classifier l(·), the global domain classifier f(·), and the multi-class

category classifier h(·) are designed in terms of one dense layer each. As far as the

semantic projection network g(·) is concerned, g1 and g3 are implemented in terms of

three dense layers each. g2 is defined considering a graph convolution layer, followed

by the pooling and flattening layers. During training, VGG-16 parameters prior to

conv-5 are frozen while the newly introduced layers are only updated.
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Chapter 5

Results

5.1 Comparative Study

We choose the following state of the art methods, ZSIH [24], CVAE [27], SEM-PCYC

[7], Doodle2search [6], Style-guide [9], AMD regularizer with SEM-PCYC and Style-

guide [10], respectively, for analyzing our performance. Similar to SketRet, these

techniques report their performances using the VGG-16 [25] based feature backbone

networks. While SEM-PCYC, and Style-guide are based on adversarial training,

CVAE and ZS-SBIR utilizes variational encoder-decoder networks. AMD regularizer

can be used together with any of the ZS-SBIR methods and it helps in tackling the

data/class imbalance between the training and test sets. The performance of our

full SketRet model on the Sketchy dataset with its two splits, the Tu-Berlin dataset

and Quickdraw-extended datasets in comparison to the state of the art is reported in

Table 5.1.

For Sketchy, split 2 is considered to be more difficult than split 1 as it consists of test

classes which are unseen to the ImageNet pre-trained networks. Amongst the other

competing techniques, we find the inclusion of AMDreg boosts the performance of the

baseline ZS-SBIR systems. For example, SEM-PCYC + AMDreg (39.7) and Style-

guide + AMDreg (33.0) are found to be superior than the standalone SEM-PCYC

(34.9) and Style-guide (37.6). In spite of this, SketRet beats SEM-PCYC + AMD by

a margin of 4%− 6% on the mAP value. We achieve a mAP value of 43.7 and 43.5

for split 1 and 2 in this regard.

The TU-Berlin dataset is challenging mainly due to the presence of classwise as well

as domain-wise data imbalance. Similar to Sketchy, AMDReg is found to boost the

performance of SEM-PCYC and Style-guide on TU-Berlin with mAP values of 33.0
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Sketchy-ext (S2) Sketchy-ext (S1) TU Berlin-ext Quickdraw-ext
Model mAP P@ 100 P@ 200 mAP @200 mAP P@ 100 mAP P@ 100 mAP P@ 100

ZSIH [24] 25.4 34.0 - - - - 22.0 29.1 13.1 18.8
CVAE [27] 19.6 - 33.3 22.5 - - 00.5 - 00.3 -

ZS-SBIR [27] - - - - 19.6 28.4 00.5 00.1 00.6 00.1
SEM-PCYC [7] - - 37.0 45.9 34.9 46.3 29.7 42.6 17.7 25.5

Doodle2search [6] 36.9 - 37.0 46.1 - - 10.9 - 07.5 -
Style-guide [9] - - 40.0 35.8 37.6 48.4 25.4 35.5 - -

Style-guide+AMDReg [10] - - - - 41.0 51.2 29.1 37.6 - -
SEM-PCYC+AMDReg [10] - - - - 39.7 49.4 33.0 47.3 - -

SketRet (Ours) 43.5 51.2 45.8 55.6 43.7 51.4 36.8 51.1 21.6 36.1
ZS-SBIR [27] - - - - 14.6 19.0 00.3 00.1 00.2 00.1

SEM-PCYC [7] - - - - 30.7 36.4 19.2 29.8 14.0 22.1
SEM-PCYC+AMDReg [10] - - - - 32.0 39.8 24.5 30.3 - -

Style-guide [9] - - - - 33.0 38.1 14.9 22.6 - -
GZS-SketRet (Ours) 22.7 25.1 22.6 33.7 33.8 41.3 22.7 38.1 15.4 28.6

Table 5.1: Comparing our SketRet with the state of the art on ZS-SBIR (top) and
GZS-SBIR (bottom) on both the splits of Sketchy-extended, TU Berlin-extended
and Quickdraw-extended datasets. All models use VGG-16 feature backbone. The
’-’ represents the evaluation metrices which were not mentioned in the respective
papers. The performances are reported in terms of mAP, mAP@200, P@100, and
P@200, respectively, where P stands for precision. S1 and S2 are splits 1 and 2.

and 29.1, respectively. The performance of other competing techniques are extremely

low, for example, Doodle2search produces a mAP value of 10.9. In contrast, we

achieve a mAP value of 36.8 for the TU-Berlin dataset with a boost of 4% over the

existing literature.

The QuickDraw dataset is excessively large-scale consisting of highly ambiguous

sketches and is by far the most challenging dataset for the ZS-SBIR task. Here, the

mAP scores achieved by ZSIH (13.1), Doodle2search (7.5), and SEM-PCYC (17.7)

are extremely low. SketRet is able to further improve the state-of-the art performance

by reporting a mAP score of 21.6, which is 4% higher than the aforesaid values.

Similar to ZS-SBIR, SketRet showcase overall improved performance measures for

GZS-SBIR for all the datasets. While we observe a marginal degradation in mAP

value for TU-Berlin (22.7) than SEM-PCYC + AMDReg (24.5), we are able to outper-

form the comparative techniques in all the other performance metrics. In particular,

SketRet produces high P@100 values of 41.3 for Sketchy (split 1), 38.1 for TU-Berlin,

and 28.6 for QuickDraw which are at least 2.5 % more than the nearest techniques

from the literature. No prior approach report the GZS-SBIR score for split 1 for

Sketchy yet. However, we find that our performance in this case is substantially high

with a mAP value of 22.7.
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5.2 Evaluating Effect of input modalities

We evaluate the effects of the semantic information and the visual feature backbones

as the input modalities.

5.2.1 Effect of Semantic Information

In the ZS-SBIR setup, the significance of the semantic information is imperative in

maneuvering the alignment of the multi-modal data in the latent space. Different

models yield different topological alignment of the classes in the latent space, which

effectively causes the similar classes to cluster in a short range, while pushing apart

the faraway classes. For example, the embeddings of armour and axe are very close

to each other in the Word2Vec space as it bags both the classes under the super class

of metals, while they are far in fasttext.

We consider the individual textual (300-d) and hierarchical embeddings as well as

their concatenations and report the mAP values in Table 5.2 for both Sketchy and

TU-Berlin. We observe that there is a variation of up to 4%, ranging from 36.3 to

43.5 in Sketchy and 28.4 to 36.8 in TU-Berlin, in the performance of SketRet by

using different semantic information. Among the individual semantic spaces, GloVe

produces inferior results for both the datasets relatively. We obtain the best perfor-

mance of Sketchy using the fasttext model with a mAP of 43.5, while for TU Berlin

the Jiang-Conrath produces the best performance with a mAP of 36.8. It is found

that the individual semantic spaces provide superior performance than their pairwise

combinations. Since the neighborhood topology may not be consistent in different

semantic spaces, the topology may vary abruptly when we concatenate them, leading

to a slight degradation in the retrieval performance.

5.2.2 Effect of Visual Features

Similar to the semantic information, the chosen visual feature encoder affects the

model performance considerably. Different backbone networks have been utilized

by a few existing techniques in the literature for ZS-SBIR. We feel it is slightly

unjust to directly compare them with the rest of the literary works which exploit

the conventional VGG-16 framework to maintain a fair comparison. Hence in this

subsection, we deploy different encoder networks to train SketRet and compare with
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W2v Glove Fasttext Path Jin-Con Sketchy (S2) TUB QuickDraw

X 41.1 32.6 21.6

X 39.3 28.4 –

X 43.5 34.6 16.2

X 40.2 36.0 18.1

X 41.9 36.8 16.8

X X 40.1 32.3 17.6

X X 40.7 33.6 15.7

X X 36.3 33.0 –

X X 37.6 32.5 –

X X 39.1 34.2 21.1

X X 39.7 33.7 14.4

Table 5.2: Effects of different semantic information on the mAP value for TU-Berlin
and Sketchy (split 2) datasets.

the respective approaches from the literature (table 5.3) to provide a base-lining for

the future endeavors.

SkechGCN [28] considers the ResNet-50 [12] architecture while SAN [20] utilizes the

ResNet 152 [12] model, both pre-trained on the Imagenet dataset. It is noticed

that SketRet with ResNet-152 performs quite poorly with a mAP@200 value of 43.0

for Sketchy and 16.0 for TU-Berlin, in comparison to SketRet with VGG-16, which

gives a high mAP@200 value of 55.6 and 54.4 for both the datasets, respectively.

The consideration of ResNet-50 feature backbone, on the other hand, achieves a

comparable mAP of 40.1 for Sketchy. We also test the performance of our framework

using the trending SE-Resnet-50 feature extractor. In this regard, SAKE [17] uses

a conditional squeeze and excitation CSE-ResNet 50 [13] architecture, while also

exploiting an auxiliary ImageNet dataset [5] to aid the training. It is worth noting

at this point that SE-ResNet is different from CSE-ResNet as it does not use any

conditional variable. In this work, we focus on those comparative frameworks which

do not utilize additional auxiliary information apart from the concerned datasets in

order to ensure a fair comparison. Hence, SAKE is not included for comparison

purposes. Overall. it can be observed that SketRet beats the concerned techniques

consistently when adopting the respective visual feature extractors.
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SketRet State-of-the-Art

Pretrain Sketchy (S2) TUB Reference Sketchy (S2) TUB

VGG-16 43.5 36.8 —- Table 5.1 —-

ResNet-50 40.1 33.2 SkechGCN [28] 38.2 32.4

ResNet-152 43.0∗ 16.0∗ SAN [20] 24.0∗ 14.0∗

SE-ResNet50 44.0* 23.8 - -

Table 5.3: Comparison of different visual backbones on SketRet and the corresponding
state-of-the-art on the TU-Berlin and Sketchy (split 2) datasets. Values are reported
in terms of mAP and * denotes mAP@200. Relevant literary work using SE-ResNet-
50 is not found.

5.3 Ablation study

The full model consists of a group of sub-modules, each contributing in its own way to

enhance the performance. In the ablation analysis, the baseline network comprises of

the Ltriplet+Lsemantic, while the full network contains Ltotal, and we analyze the effects

of adding binary domain classifier Lglobaldom , global adaptation loss L1, local adaptation

loss L2, and the cross-modal reconstruction loss L3 into the base model. We report

the results in terms of mAP values on Sketchy and TU-Berlin datasets (table 5.4).

The global adaptation is performed on the latent features to reduce the domain-

gap between the data from the two modalities by increasing the domain confusion.

This is expected to yield a class-wise overlapping embedding space for sketches and

images. Simply adding the the binary domain classifier without the label classifier

leads to mode collapse and the performance is at par with the baseline. To avoid this

and maintain class-wise discriminativeness, we add the full L1 loss and observe an

increase in the overall performance (33.4 / 22.5) to that of the baseline framework

(table 5.4). We then append the network with the local adaptation module applied on

the intermediate feature maps, wherein we seek to highlight important local constructs

common to both the modalities. We see a further boost in the overall performance

(36.9 / 26.1) of the network and at this stage the results are comparable to the state-

of-the-art. When we further go on to add the cross-modal reconstruction modules,

we observe significant improvements in the results (43.5 / 32.6). As evident from

table 5.4, the full model incurs a boost of 12− 13% on the mAP values for both the
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Experimental set up Sketchy (S2) TUB QuickDraw
L
o
ss
es

Ltriplet + Lsemantic 27.6 20.1 3.7

Ltriplet + Lsemantic + Lglobaldom 28.5 21.4 7.1

Ltriplet + Lsemantic + L1 33.4 22.5 11.2

Ltriplet + Lsemantic + L1 + L2 36.9 26.1 13.4

Ltriplet + Lsemantic+ L1 + L2 + L3 (Ltotal) 43.5 32.6 21.6

M
o
d
el

F w/o GCN 41.2 31.1 18.8

F w/o attention block in local DA 38.6 26.2 14.3

F w/o local attention & GCN 34.2 23.7 13.8

F w/o GCN (GZS-SBIR) 13.4 14.3 10.3

Table 5.4: Ablation of loss functions and model components in terms of mAP for
both Sketchy (split 2) and TU-Berlin. Here F denotes the full model.

datasets than the baseline, ranging from 27.6 to 43.5 in the Sketchy and 20.1 to 32.6

in the TU-Berlin.

Further, we study the effects of the graph CNN module in g(·) and the spatial atten-

tion layers in φatt and ψatt, respectively. We observe a marginal performance drop of

around 1−2% from 32.6 mAP to 31.1 in TU-Berlin and 43.5 mAP to 41.2 in Sketchy,

when the GCN layer is removed from the full SketRet. Similarly, the attention module

is crucial in highlighting the domain-invariant mid-level features and SketRet without

the attention layers is found to marginally degrade the performance. We notice a fall

from 43.5 to 38.6 in the Sketchy (split 2) and 32.6 to 26.2 in the TU-Berlin, which

is nearly 5 − 6% drop, confirming their relevance. We also investigate the effect of

removing the graph CNN module for the GZS-SBIR experiments and notice a drop in

the mAP values to 13.4 and 14.3 in the Sketchy and TU-Berlin datasets, respectively.

5.4 Study of Hubness

In this section, we aim to show the role of the domain losses in retrieving more

discriminative image samples given the sketch queries. We first train the model using

Ltriplet + Lsemantic + L1, followed by training the entire model with all the domain

loss functions. In the first case, we notice the presence of hubs. Precisely, the left

column of Figure 5.1 shows a scenario where the instances of rifle class are retrieved

for nearly many query samples as the embeddings of the rifle class are cluttered in

the feature space with multiple classes, like giraffe, tree, and windmill. When we

look at the quantitative results and study the query sample wise precision scores, it
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Figure 5.1: Left hand column shows the top-8 retrieval instances for a few sketch
queries from the Sketchy dataset using Lsemantic + Ltriplet + L1 model. The green
checks denote correctly retrieved classes, while the red crosses denote images from
incorrect class. The blue stars denote the hub instances occurring repeatedly from
a particular common class for most of the classes (rifle in this case). The right
hand column shows the top-8 retrieval images for the same query sample using the
full model. Notice that there are no hub instances generated here.

is noticed that while a few queries of those classes do yield high values (upto 40%

P@100), others fail miserably and end up retrieving a large number of hubs. This

results in a considerable amount of samples giving < 10% P@100 scores.

We further repeat the same analysis for the query samples when the full SketRet

model is trained. In this case, we observe that the precision scores in terms of both

P@100 and P@200 are uniformly distributed over all the samples for different classes.

No particular class is visibly found to clutter the retrieval results in the latent space.

The right column of figure 5.1 depicts that by jointly using the global and local adap-

tations and using cross-modal reconstruction modules, we are able to achieve hub-free

retrieval results for the same set of query instances. This establishes our claim that

the notion of fine-grained domain adaptation helps in obtaining a more discriminative

latent space to combat hubness and negative knowledge transfer judiciously.

5.5 Qualitative Results

In this section, we provide qualitative results by showing the zero-shot retrieved photo

instances for a few sample sketches.

21



Figure 5.2: Top-15 retrieval instances for a few sketch queries from the Sketchy dataset
using the full model. The green checks denote correctly retrieved classes, while the
red crosses denote images from incorrect class. Notice that there are no hub instances
generated here.
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Figure 5.3: Grad-CAM plots highlighting the region of importance in a few sample
sketch and photo images (left column) on the model trained without the L2 and L3
losses (middle column) and on the full model (right column).

5.6 Grad-CAM visualization

Gradient-weighted class activation mapping (Grad-CAM) primarily uses the gradi-

ents of the target class at the final convolution layer to synthesize an intermediate

localization map which highlights the most important regions in the image. The

Grad-CAM plots effectively helps in displaying the region which gets the most im-

portance for any particular target-class. We train the model without the L2 and L3

losses and the full model and show the Grad-CAM plots of both the models for a few

images in Fig. 5.3. We can see that the full model produces better highlight to the

local constructs. Notice in the butterfly image, although the foreground consists of

both the butterfly and the flower, the importance is layed properly on the concerned

butterfly class. In Fig. 5.2, we show the zero-shot image retrieval results for a few

sample sketches from the Sketchy-extended dataset.
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Chapter 6

Conclusion

In this thesis, we discuss the methodology and results of a novel ZS-SBIR framework

called SketRet. The main premise of this model is to perform improved alignment

between the image and sketch features based on both the mid-level and high-level

CNN based feature embeddings. Together, we introduce two generative cross-modal

reconstruction modules to ensure the learning of robust modality-independent fea-

tures. We further propose to project the semantic information into the shared latent

space through a two-stream fusion network by jointly exploiting both the prototypes

and the semantic class neighborhood. Overall, SketRet learns a discriminative and

compact latent space and wisely tackles both the negative transfer and the hubness

issues of domain adaptation and ZSL, respectively. Experimentally, we outperform

the recent techniques in all the performance metrics on all the existing datasets.
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