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Problem Statment

Input: A sequence of video frames V = (v1, v2, ..., vn).
Output: A sentence S = (w1,w2, ...,wm)

Conditional probability of output sequence S given an input sequence V
is given by p(w1,w2, ...,wm|v1, v2, ..., vn)

Therefore, we would like to maximise the log likelihood of sentence S
given video frames V , and captioning model parameters θ

θ∗ = argmax
∑
V ,S

log p(S |V ) (1)

If we assume a model that generates a the word sequence in order,
then

log p(S |V ) =
N∑
t=0

log p(wt |V ,w1,w2, ...,wt−1) (2)

Ruchika Chavhan Video Captioning September 9, 2021 3 / 48



Problem Statment (cont.)

Common Datasets:

I MSR-VTT: Microsoft Research Video to Text

I MSVD: YouTube clips with captions

I ActivityNet Captions, YouCook: Captions available for temporal
segments of each video. Mostly used for dense captioning

Evaluation Metrics:

I ROUGE-L: Relative length of Longest Common Subsequence

I BLEU-n: Percentage of similar n-grams

I METEOR: Harmonic mean of unigram precision and recall

I CIDEr: Cosine similarities between Term Frequency Inverse
Document Frequency (TF-IDF)
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Sequence to sequence models

(a) Translating Videos to Natural
Language Using Deep Recurrent Neural
Networks, NAACL-HLT 2015

(b) Sequence to Sequence – Video to Text,
ICCV 2015

zt = Wzhht ;

p (w | zt) =
exp (Wwzt)∑

w ′∈D exp (Ww ′zt)
(3)
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Sequence to sequence models (cont.)

Figure 2: Describing Videos by
Exploiting Temporal Structure, ICCV
2015.
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Sequence to sequence models (cont.)

Using features from other auxiliary tasks:

(a) The Long-Short Story of Movie
Description

(b) Spatio-Temporal Attention Models for
Grounded Video Captioning, ACCV 2016
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Sequence to sequence models (cont.)

Figure 4: Hierarchical Recurrent Neural Encoder for Video Representation with
Application to Captioning, 2015

The input sequence (x1, x2, ..., xT ) into several chunks (x1, x2, ..., xn),
(x1+s , x2+s , ..., xn+s), ..., (xT−n+1, xT−n+2, ..., xT ), where s is stride and it
denotes the number of temporal units two adjacent chunks are apart.
After inputting these subsequences into the LSTM filter, we will get a
sequence of feature vectors h1, h2, .., h T

n
.
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Sequence to sequence models (cont.)

Figure 5: Temporal Deformable Convolutional Encoder-Decoder Networks for
Video Captioning, AAAI 2019

Consider the output of the l − 1 temporal convolutional block to be
pl−1 =

(
pl−1

1 , . . . , pl−1
Nv

)
, where Nv is the number of frames in the video.

Each output intermediate state pli is achieved by feeding the subsequence
X =

(
pl−1
i+r1

, pl−1
i+r2

, . . . , pl−1
i+rk

)
into a temporal deformable convolution.

Here, rn ∈ {−k/2, ..., k/2}.
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Sequence to sequence models (cont.)

Temporal Deformable Convolutional Encoder:

∆r i = W l
f

[
pl−1
i+r1

, pl−1
i+r2

, . . . , pl−1
i+rk

]
+ blf

o l
i = W l

d

[
pl−1
i+r1+∆r i1

, pl−1
i+r2+∆r i2

, . . . , pl−1
i+rk+∆r ik

]
+ bld

pl−1
i+rn+∆r in

=
∑
s

B
(
s, i + rn + ∆r in

)
pl−1
s

pli = g
(
o l
i

)
+ pl−1

i (4)

B is a function defined by B(a, b) = max(0, 1− |a− b|) and
g(A,B) = g

(
o l
i

)
= A⊗ σ(B) is the gated linear unit (GLU) activation

function (Note: o l
i is twice the dimension).

Temporal Deformable Convolutional Encoder:

qlt = g
(
W q

l

[
ql−1
t−k+1, q

l−1
t−k+2, . . . , q

l−1
ι

]
+ bql

)
+ ql−1

ι (5)
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Sequence to sequence models (cont.)

Figure 6: End-to-End Video Captioning, ICCVw 2019

I In all previous papers, CNNs are pretrained on object and/or action
recognition tasks and used to encode video-level features.

I The decoder is then optimised on such static features to generate
the video’s description.

I This is a sub-optimal disjoint setup!

Ruchika Chavhan Video Captioning September 9, 2021 11 / 48



Sequence to sequence models (cont.)

Two step training process:
I In Stage 1, the weights of the pre-trained encoder are frozen to train

the decoder. Decoder is trained with respect to pre-computer
encoder features.

I In Stage 2, The whole network is trained end-to-end while freezing
the batch normalisation layer.

Decoder: Let E be the work embedding function, yt be a word of the
original caption, and ϕt(V ) be the hidden state of the LSTM attended
with the visual features. The input to the LSTM is given by
zt = [ϕt(V ),E [yt−1]]

ut = Wu [ϕt(V ), ht ] + E [yt−1] + bu

pt = softmax (Wp tanh (ut) + bp) (6)
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Adversarial methods

Video Captioning by Adversarial LSTM

LD(Y ,D(S)) = − 1

m

m∑
i=1

[(Yi ) log (D (Si )) + (1− (Yi ) (log (1− D (Si )))]

minimizing : L(S | V ) = Es∼P(s),v∼P(v)[logP(S | V )]+

Es∼P(s)[log(1− D(G (S)))] (7)
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Adversarial methods (cont.)

Caveat: The LSTM outputs p(wt |V ,w1, ...,wt−1), from which a word wt

is sampled. Hence, Words should be in an one-hot format which not only
are high dimensionality but also are discrete. Makes it difficult for
gradients to propoagate!

One solution is to use a soft-argmax function instead of the conventional
argmax

wt−1 = εwe (softmax 〈Vht−1 � L〉 ,We) (8)

Another thing to notice! In the paper, the discriminator is implemented
in the form of a convolutional network. Word embeddings of a sentence
of length T are concatenated, and are represented as a matrix
Xd ∈ RC×T = (xd1 , ..., xdT ).

Why not use LSTM model for the discriminator?
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Adversarial methods (cont.)

Figure 7: Adversarial Inference for Multi-Sentence Video Description, CVPR
2019
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Adversarial methods (cont.)

1. Visual Discriminator Visual relevance

pif = σ
(
tanh

(
UT v̂ i

f

)
� tanh

(
V Tωi

))
λif =

ea
T
f ω

i∑
j e

aTj ω
i

DV

(
s i | v i

)
=
∑
f

λif p
i
f (9)

2. Language /Pairwise Discriminator To promote fluency and
grammatical correctness. Negative pairs are created by shuffling random
words/sentences and repeating some phrases/sentences.

h1
t , h

2
t = Bi-LSTM(S) (10)

DL

(
s i
)

= σ
(
WL[h1

t , h
2
t ] + bL

)
(11)
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Reinforcement Learning based methods

Figure 8: Video Captioning via Hierarchical Reinforcement Learning, CVPR’18

I Worker: Generates a word for each time step by following the goal
proposed by the manager

I Manager: Operates at a lower temporal resolution and emits a goal
when needed for the worker to accomplish

I Internal Critic: Determines if the worker has accomplished the goal
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Reinforcement Learning based methods (cont.)

Manager and Worker: Quantities with sub/super-script W /M belong
to the Worker/Manager. All the hidden and cell states are obtained from
respective LSTMs. gt denotes the latent continuous goal vector.

hMt = SM
(
hMt−1,

[
cMt , h

W
t−1

])
gt = uM

(
hMt
)

hWt = SW
(
hWt−1,

[
cWt , gt , at−1

])
xt = uW

(
hWt
)

πt = Soft Max (xt) (12)

Internal Critic: The critic is pre-trained to maximize the likelihood of∑
t log p (z∗t | a1, · · · , at−1) given ground truth signal. Once it is trained,

it predicts the probability that actions are in accordance with gt

hIt = RNN
(
hIt−1, at

)
p (zt) = sigmoid

(
Wzh

I
t + bz

)
(13)
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Reinforcement Learning based methods (cont.)

Worker πθw (stochastic policy) : Using the REINFORCE Algorithm,
we get ∇θwL (θw ) ≈ − (R (at)− bwt )∇θw log πθw (at). Here, bt = f (hWt )
is the baseline that reduces the variance without changing the expected
gradient.

Manager µθm (deterministic policy) : Let et,c and R(et,c) denote the
expected action of length c performed by following goal gt and reward
accumulated till time t respectively.

L (θm) = −Egt [R (et)π (et,c ; st , gt = µθm (st)]

∇θmL (θm) = −Egt [R (et,c)∇gtπ (et,c ; st , gt)∇θmµθm (st)]

∇θmL (θm) = −R (et,c)∇gt log π (et,c)∇θmµθm (st)

∇θmL (θm) = −R (et,c)

[
t+c−1∑
i=t

∇gt log π (ai )

]
∇θmµθm (st) (14)
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Reinforcement Learning based methods (cont.)

Figure 9: Less Is More: Picking Informative Frames for Video Captioning, 2018

Informative frame picking: Selecting a subset of frames from the video
such that they convey relevant visual and temporally consistent
information.
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Reinforcement Learning based methods (cont.)

Let the last picked frame be g̃ and the frame in consideration at time t
be gt .

dt = g̃ − gt

st = W2 · (max (W1 · vec (dt) + b1, 0)) + b2

pθ (at | zt , g̃) ∼ softmax (st) (15)

Rewards:

I Language rewards: Accuracy of generated sentence with respect to
predicted sentence rl (ci ,Si ) = CIDEr (ci ,Si )

I Visual Diversity reward: Variance of selected frames

rv (vi ) =
∑D

j=1

√
1
Np

∑Np

i=1

(
x

(j)
i − µ(j)

)2
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Reinforcement Learning based methods (cont.)

Therefore, the final reward is given by

r (vi ) =

{
λl rl (vi ,Si ) + λv rv (vi ) if Nmin ≤ Np ≤ Nmax

R− otherwise
(16)

Training:

I Policy: The encoder-decoder sentence generator is trained on the
cross entropy of generated sentences and ground truth captions.

LX(ω) = −
m∑
t=1

log (pω (yt | yt−1, yt−2, . . . y1, v)) (17)

I PickNet: Using the REINFORCE Algorithm,

LR(θ) = −Eas∼pθ [r (as)]

∇θLR(θ) = −Eas∼pθ [r (as)∇θ log pθ (as)] (18)
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Semi-supervised learning based methods

Figure 10: Semi-Supervised Learning for Video Captioning, ACL 2020

I For labeled data, models are trained with the traditional
cross-entropy loss.

I For unlabeled data, a self-critical policy gradient method is utilised.
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Semi-supervised learning based methods (cont.)

Let u and u∗ denote the output class distribution of the original video
and augmented video. Considering an on-policy method, let
yt = Sample(pθ (ŷ1:t−1,ub))

r̂ =
T∑
t=1

d̂t =
T∑
t=1

DKL (pθ (ŷt | ŷ1:t−1,u) ‖pθ (ŷt | ŷ1:t−1,u∗)) (19)

Baselines for the self-critical training sequences are found using greedy
policy, where ỹt = arg max

ỹt

pθ (ỹ1:t−1,u)

r̃t = DKL (pθ (ỹt | ỹ1:t−1,u) ‖pθ (ỹt | ỹ1:t−1,u∗)) (20)

The policy gradient update step is given by

∇θLu(θ) = −
T∑
t=1

(r̂ − r̃)∇θ log pθ (ŷt | ŷ1:t−1,u) (21)
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Semi-supervised learning based methods (cont.)

Figure 11: Weakly Supervised Dense Event Captioning in Videos, NIPS 2018

During training, only a few sentences are available for each video. It is
assumed that each caption describes one temporal segment, and each
temporal segment has one caption. The training is carried out in a cycle
of dual problems.

I Sentence localiztaion

I Caption generation
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Semi-supervised learning based methods (cont.)

Video V = (v1, v2, ..., vn).

Temporally continuous segments of V → temporally coordinates
{S = (mi , vi )}Ni where mi and vi denote center and width
respectively.

Let Ci be the caption for each temporal segment.

The dual tasks are defined as:

I Sentence localization: To localize segment Si corresponded to the
given caption Ci by learning the mapping lθ1 : (V ,Ci )→ Si

I Event Captioning: Inversely generate caption Ci for the given
segment Si by learning the function gθ2 : (V ,Si )→ Ci
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Semi-supervised learning based methods (cont.)

When we nest the two functions together, we obtain:

Ci = gθ2 (V , lθ1 (V ,Ci )) (22)

Si = lθ1 (V , gθ2 (V ,Si )) (23)

The dual problems exist simultaneously once the correspondence between
Si and Ci is one-to-one. We train the parameters θ1 and θ2 to minimise
the loss function given by:

Lc = dist (Ci , gθ2 (V , lθ1 (V ,Ci ))) (24)

Testing procedure:

I Cannot apply the cycle process as caption is unknown

I Perform caption generation on a bunch of randomly initialized
segments and then map the resulting captions back to the segment
space using lθ1
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Semi-supervised learning based methods (cont.)

Fixed Point Iteration: An iteration is defined as:

S(t + 1) = lθ1 (V , gθ2 (V ,S(t))) (25)

where S(t) will converge to the fixed-point solution i.e.
S? = lθ1 (V , gθ2 (V ,S?)), if there exists a sufficiently small ε > 0
satisfying ‖S(0)− S?‖ < ε and the function lθ1 (V , gθ2 (V ,S)) is locally
Lipschitz continuous around S? with Lipschitz constant L < 1.

I Sample a batch of random candidate segments {S (r)
i }

Nr

i for the
target video as initial guesses, and then perform the fixed point
iteration to obtain S ′i .

I S ′i is then used to generate captions using the caption generator.

I With only one iteration, the method delivers promising results.
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Semi-supervised learning based methods (cont.)

How to enforce that temporal segments of true data converge to
fixed-point solutions by one-round iteration?

Recall: We have no supervision for temporal segments.

Ls = dist (lθ1 (V ,Ci ) , lθ1 (V , gθ2 (V , εi + lθ1 (V ,Ci )))) , (26)

where εi ∼ N (0, σ) is a Gaussian noise.
The total loss function is:

L = Lc + λsLs (27)
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Zero-shot video captioning

Figure 12: Learning to Compose Topic-Aware Mixture of Experts for Zero-Shot
Video Captioning, AAAI 2019

Problems: “Sharpening Knives” is a novel activity unseen in training, and
existing methods fail to generate a pertinent caption because it is aware
of neither the action “sharpening” nor the object “knife”.

Goal: A model is required to accurately describe novel activities in videos
without any explicit paired training data.
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Zero-shot video captioning (cont.)

Figure 13: Framework: Learning to Compose Topic-Aware Mixture of Experts
for Zero-Shot Video Captioning, AAAI 2019
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Zero-shot video captioning (cont.)

Video Encoding Module: Given an input video v1, v2, .., vn, a
pretrained 3D convolutional neural networks is employed to extract the
segment-level features {fj} , which are further sent to a bidirectional
LSTM.

Term Frequency-Inverse Document Frequency (TFIDF) -based
Topic Embedding: The segment level features are assigned a topic and
further topic-related documents from various data sources (Wikihow etc)
are fetched.

Given an activity label y and related documents Dy , topic-specific
knowledge representations is given by TF-IDF.

gk(y) =
zk(y)∑

xl∈Dy
zl(y)

log

(
|Y |∑

y ′∈Y min (1, zk (y ′))

)
(28)

Weights gk(y) demonstrate the relevance of each unigram xk to the
topic-related documents Dy , where zk(y) is the number of times the
unigram xk occurs in the documents
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Zero-shot video captioning (cont.)

The TF-IDF embeddings and topic-aware embeddings are given by are
given by Wtopic(y) =

∑
xk∈Dy

gk(y)Wfasttext (xk).

Attention Based LSTM: Given a contect vector ct , calculated from the
weighted sum of encoded video features, the hidden state of LSTM is
given by hdt = LSTM

(
[wt−1, ct ,Wtopic (y)] , hdt−1

)
Mixture-of-Expert Layer and Topic-Aware Gating Function: All
throughout the framework, it is assumed that the basics of captioning are
shared among topics. A mixture of S experts is considered, which consist
of mapping function from the latent representation hdt to the
vocabulary.

ot =
S∑

s=1

βsEs

(
hdt
)

(29)

βs =
exp

(
G (Wtopic(y))s /τ

)∑S
i=1 exp

(
G (Wtopic (y))i /τ

) (30)
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Transformer-based methods

Transformer: A model that relies entirely on an attention mechanism to
draw global dependencies between input and output, thus forfeiting any
recurrence.

Basic components of a transformer network:
Scaled Dot-product Attention: Given a matrix of queries Q ∈ Rdk ,
keys K ∈ Rdk and values V ∈ Rdv , the matrix of outputs is defined
as:

Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V (31)

Multi-head Attention: This function consists of h different heads,
where each head performs the scaled dot-product attention.

MultiHead(Q,K ,V ) = Concat ( head 1, . . . , head h)WO

where head i = Attention
(
QWQ

i ,KW
K
i ,VW

V
i

) (32)

Ruchika Chavhan Video Captioning September 9, 2021 34 / 48



Transformer-based methods (cont.)

Positional encoding:

I To add position related information to the input embedding, which
was forfeited due to the lack of convolution or recurrent function.

I Implemented in the form of sine and cosine function of their relative
positions with respect to dimension i (Eq. 33).

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (33)

Leftward information flow: Without any recurrence, information is free
to flow in the left (i.e. from wt+1 to wt). This implies that autoregressive
property is broken!
Solution? Masked Multi-Head attention: Set value −∞ for all illegal
connections.
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Transformer-based methods (cont.)

Figure 14: Attention is all you Need,
NIPS 2017

I For “encoder-decoder”
attention layers:
− Q: previous decoder layer
− K ,V : output of the

encoder
I For encoder self-attention:

Q,K ,V come from output of
the previous layer in the
encoder

I For decoder self-attention,
each position is allowed to
attend to all positions in the
decoder up to and including
that position.

Ruchika Chavhan Video Captioning September 9, 2021 36 / 48



Transformer-based methods (cont.)

Figure 15: Character-Level Language Modeling with Deeper Self-Attention
faces context fragmentation

I Model cannot capture any longer-term dependency beyond the
predefined context length

I How to train a Transformer to effectively encode an arbitrarily long
context into a fixed size representation?

I How can we improve evaluation procedure?
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Transformer-based methods (cont.)

Transformer - XL

Figure 16: Transformer-XL: Attentive Language Models Beyond a Fixed-Length
Context

(hn−1
τ+1 =

[
SG
(
hn−1
τ

)
◦ hn−1

τ+1

]
)

(qn
τ+1, k

n
τ+1, v

n
τ+1 = hn−1

τ+1W>q , h
n−1
τ+1W>k , h

n−1
τ+1W>v )

hn
τ+1 = Transformer − Layer(

(
qn
τ+1, k

n
τ+1, v

n
τ+1

)
) (34)

Ruchika Chavhan Video Captioning September 9, 2021 38 / 48



Transformer-based methods (cont.)

Figure 17: Using Transformers in video captioning
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Transformer-based methods (cont.)

Figure 18: TVT: Two-View Transformer Network for Video Captioning,
ACML’18. The visual feature is a attended function of features extracted from
RGB images by 2D CNN and those obtained by a 3D CNN for motion
recognition.
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Transformer-based methods (cont.)

Two views?: Because two transformers have been used for visual
features and motion features.
Let Ef be the matrix of frame representations obtained by 2D CNN on
each frame, and Em be obtained by a 3-D CNN on consecutive frames.
The corresponding sentence is denoted by Ds

Qf = LayerNorm (Ds)WQ
f

Kf = EfW
K
f

Vf = EfW
V
f

(35)

Cf = MultiHead (Qf ,Kf ,Vf )

Cm = MultiHead (Qm,Km,Vm)
(36)

Further, columns from the two features Cf and Cm are concatenated
along with Ds , and passed through another transformer as K ,V .
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Transformer-based methods (cont.)

BERT in video captioning

Figure 19: VideoBERT: A Joint Model for Video and Language Representation
Learning

I BERT proposes to learn language representations by using a
“masked language model” training objective
L(θ) = Ex∼D

∑L
l=1 log p

(
xl | x\l ; θ

)
I For video captioning, the model predicts the masked video features

and words.
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Graph-based methods

Figure 20: Problem Statement: Spatio-Temporal Graph for Video Captioning
with Knowledge Distillation, CVPR 2020

I Objects in a video interact with each other spatially and transform
their location, pose, etc temporally. To capture these two
correlations, the graph has been split into two components: spatial
and temporal.
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Graph-based methods (cont.)

Visual Features: Scene features {f1, f2, . . . , fT} obtained from 2D CNN,
3D CNN features {v1, v2, . . . , vL}, and Faster R-CNN object features

Fo =
{
o1

1 , o
2
1 , . . . , o

j
t , . . . , o

NT

T

}
.

Adjacency matrices for graph:

G space
tij =

expσtij∑Nt

j=1 expσtij
(37)

G time
tij =

exp cos
(
o i
t , o

j
t+1

)
∑Nt+1

j=1 exp cos
(
o i
t , o

j
t+1

) (38)

G st =


G space

1 G time
1 0 . . . 0

0 G space
2 G time

2 . . . 0
0 0 G space

3 . . . 0
...

...
...

. . .
...

0 0 0 . . . G space
T

 (39)
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Graph-based methods (cont.)

Graph convolution network: For a GCN with Nl layers stacked on top
of each other, the graph is updated via

H(l+1) = ReLU
(
H(l) + Λ−

1
2 G stΛ−

1
2 H(l)W (l)

)
(40)

H(0) is the stack of object features while the final object representing
features obtained from the GCN is denoted by F ′o .

Incorporating both scene and object features: Two separate
language decoders are used for both scene and object features, trained on
the cross entropy loss denoted by Ls-lang and Lo-lang respectively.
The distillation loss is obtained by minimising cross entropy between the
probability distributions produced by the two decoders.

Ldistill = −
∑
x∈V

Ps(x) log

(
Po(x)

Ps(x)

)
L = Lo−lang + λslLs−lang

+ λdLdistill , (41)
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Audio-visual captioning

Figure 21: Multi-modal Dense Video Captioning (MDVC) framework, CVPRw
2020
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Audio-visual captioning (cont.)

Figure 22: A Better Use of Audio-Visual Cues: Dense Video Captioning with
Bi-modal Transformer, BMVC 2020

I Let A and V denote audio features and video features respectively.
The ground truth captions are denoted by C .

I The encoder and decoder consist of three different layers:
self-attention, bi-modal attention, and position-wise fully-connected
layers.
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Other training paradigms:

Some Novel Research in Video Captioning

I Active Learning for Video Description With Cluster-Regularized
Ensemble Ranking, ACCV 2020

− Study of different active learning methods for sequence-to-sequence
video captioning

I Open Book Video Captioning, CVPR 2021

− By using actions and objects in the video, the model generates
textual descriptions that are not limited to the video or vocabulary

Possible research direction:

I Cross-domain captioning: This has been extensively studied for
image captioning, but its extension to video captioning seems
non-trivial.

I Crafting adversarial examples: Some work has been done for
image captioning and video recognition, but to the best of my
knowledge, none for captioning.
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