
Image Compression using
Deep Learning

Ruchika Chavhan

1

Outline
1. What is Image Compression?
2. Deep Learning Techniques for Image Compression
3. Implementation of models
4. Optimizing results
5. Testing on Jetson Nano
6. Comparing the models
7. Conclusion
8. Future Work

2

Outline
1. What is Image Compression?
2. Deep Learning Techniques for Image Compression
3. Implementation of models
4. Optimizing results
5. Testing on Jetson Nano
6. Comparing the models
7. Conclusion
8. Future Work

3

Why Image Compression?

Host PC

● Lack of bandwidth, large
data cannot be
transmitted

● Slow execution of
algorithms

● Eradicate redundant
information

Solution: Compressing an image into a lower dimensional
vector and restoring it as an image

4

With image compression

Image
compression
(on board)

Decompression
(on host PC)

5

How to evaluate performance?

S, S' are the sizes of image before & after compression

● Compression ratio: S/S’
● Bits per pixel (bpp): S’ /total pixels
● PSNR: log inverse of mean squared error
● SSIM: Structural Similarity Index

6

Conventional methods
Run length encoding

Loss less

Image
compression

Lossy

PNG

Discrete Cosine Sampling
(JPEG)

Chroma subsampling

7

Outline
1. What is Image Compression?
2. Deep Learning Techniques for Image Compression
3. Implementation of models
4. Optimizing results
5. Testing on Jetson Nano
6. Comparing the models
7. Conclusion
8. Future Work

8

Why use Deep Learning Methods?

● More flexible for multi-tasking devices:
○ Suppose we want to perform classification from input

image on host PC
○ Waste of time reconstructing image and then classifying

● Deep Learning methods have recently provided
higher PSNR and SSIM metrics than JPEG

● Auto encoders are powerful feature extractors

9

Lossy Compressive Auto-encoders

DecoderEncoder Quantizer

0.1
0.2
.
.
.
0.7

0
0
.
.
.
1

x x`
Pq (empirical prob dist. of the
quantization function)

Quantization applied by rounding
to the nearest integer, easier to
compress in a bitstream

10

➢ We need low information Entropy
➢ Most research is focused on tackling the

non-differentiability
○ Stochastic binarization
○ Adding uniform noise to output and using entropy of

this dist

Minimize H[Pq] + || x - x ` ||2

Lossy CAE

11

Using Laplacian as compressed image

Image Laplacian

● Most pixels are zero
● Easier to compress
● Easier to

reconstruct

12

Auto Encoder: Image to Laplacian

I

Loss = | I - I ` | + | L - L ` |

I L ` I `

L

13

Cycle Consistent GAN: Cycle-GAN

X Y

DX DY

X Y`

G
X`

F
Y X`

F

Y`

G

https://arxiv.org/abs/1703.10593

14

X: image of domain X
Y: image of domain Y
DX: discriminator that classifies images
of domain X
DY: discriminator that classifies images
of domain Y
G: translates images from domain X to Y
F: translates images from domain Y to X

https://arxiv.org/abs/1703.10593

15

Cycle Consistent GAN: Optimization
Adversarial loss for G and DY

Total Loss

Outline
1. What is Image Compression?
2. Deep Learning Techniques for Image Compression
3. Implementation of models
4. Optimizing results
5. Testing on Jetson Nano
6. Comparing the models
7. Conclusion
8. Future Work

16

Learning Conditions
● Input image: 1008 x 1008
● Output image: same size as input image
● Compressed image: ½ of input image
● Compression ratio: 4

17

Environmental conditions
● Training done on Google Colab

○ 15 Gb GPU available
○ 12 Gb RAM available

● We used the Jetson Nano because is it similar to the one used in
the real setting
○ GPU: NVIDIA Maxwell architecture with 128 NVIDIA CUDA

cores
○ CPU: Quad-core ARM Cortex-A57 MPCore processor

● Host PC:
○ Personal Laptop: HP Pavilion (8GB RAM)

18

Cycle-GAN models

Model size PSNR SSIM

62 Mb 28.11 0.7511

2 Mb 28.62 0.7942

600 Kb 30.23 0.8035

● Input image: 504 x 504
● Compressed size: 252 x 252
● Compressed image: [0, 255]
● Output image: 504 x 504

19

Original Reconstructed

➢ Image is blurry
➢ Structural

information is
lost

➢ Many small
details are lost

20

Original Reconstructed

➢ Slightly more
sharper than
before

➢ Image details
and texture is
still not
reconstructed

21

Original Reconstructed

➢ Similar to
previously
reconstructed
images using
Cycle-GAN

22

Auto encoder models

● Input image: 504 x 504
● Compressed size: 252 x 252
● Compressed image: [0, 255]
● Output image: 504 x 504

Model size PSNR SSIM

126Mb 27.36 0.7491

4 Mb 25.56 0.6941

23

Original Reconstructed

➢ Images are
very blurry

➢ Intensity
information is
lost

➢ Small details
are lost

24

Original Reconstructed

➢ Auto encoder
models are
unable to
reconstruct
images with
minimal loss

25

Lossy CAE
● Input image: 504 x 504
● Compressed size: n x 126 x 126 (n=8, 32)
● Compressed image: {0, 1}
● Output image: 504 x 504

Model size PSNR SSIM

53 Mb 28.88 0.7874

2 Mb 28.56 0.7855

26

Original Reconstructed

➢ Slightly better
compared to
previous
models

➢ Still, the
intensity and
structure loss
persists

27

Original Reconstructed

➢ Similar to
previously
reconstructed
images using
Lossy CAE

28

Outline
1. What is Image Compression?
2. Deep Learning Techniques for Image Compression
3. Implementation of models
4. Optimizing results
5. Testing on Jetson Nano
6. Comparing the models
7. Conclusion
8. Future Work

29

Training the models on larger images
● Problems faced

○ More computations are required
■ Due to increasing in image size
■ This calls for training models of smaller size
■ Smaller models are not good feature extractors

○ Training instability
■ Due to environmental restrictions
■ Google colab offers 15 GB GPU

● We need to train smaller models for larger images
without losing structural information.

30

Solution: Preventing information loss
● Better loss function

○ SSIM is a good and robust metric for comparing
two images

○ Minimize (1-SSIM) (not many papers/codebases on GitHub have used it!)

● Better performance obtained on smaller models
● Training stability
● Leads to higher PSNR as compared to using MSE

31

Cycle GAN
● Training involves 4 networks

○ Generator (image to features)
○ Generator (features to image)
○ 2 Discriminators

● GPU limit (15 GB) on Google Colab
● Divide image into patches of 504 x 504 (4 patches)

○ Then pass to the encoder
○ Batch size during testing is 4

32

Original Reconstructed
➢ Compared to

previous
models, the
images are
much sharper

➢ For Cycle-GAN,
the lines along
which images
are patched
are still visible

33

Original Reconstructed

➢ Less intensity
loss

➢ Decrease in
blurriness

➢ Structure is
maintained

34

Original Reconstructed

➢ The SSIM loss
has helped to
reconstruct
sharper
images in case
of Cycle GAN

35

Auto encoder

● Low performance when output of the encoder is
constrained to be Laplacian

● Experiments conducted without the Laplacian
● Increase in performance observed
● Input size: 1008 x 1008
● Compressed image: 252 x 252
● PSNR: 31.17
● SSIM: 0.875

36

Original Reconstructed

➢ Details of
images are
preserved
while
compression

37

Original Reconstructed

➢ Background
objects are
also
reconstructed
with adequate
details

38

Original Reconstructed

➢ Slight loss of
structure

➢ Notice the
shelf!

39

Lossy CAE

● Input size: 1008 x 1008
● Compressed image: 8 x 252 x 252
● PSNR: 34.01
● SSIM: 0.9343

40

Original Reconstructed

➢ Notice the
shelf in this
reconstructed
image

➢ Better results
than previous
models

41

Original Reconstructed

➢ Details are
well
preserved

➢ Image is
sharper

42

Original Reconstructed

➢ Results of
Lossy CAE
trained with
SSIM as loss
outperform
previous
models

43

Original Reconstructed

➢ This is a result
from lossy CAE
trained with
MSE loss

➢ This results is
much more
blurry
compared to
the one in
previous slide

44

Outline
1. What is Image Compression?
2. Deep Learning Techniques for Image Compression
3. Implementation of models
4. Optimizing results
5. Testing on Jetson Nano
6. Comparing the models
7. Conclusion
8. Future Work

On the Jetson Nano

Image Encode

Send

Reshape, convert to tensor

Reshape,
long Convert to cpu tensor

Decode

46

What models are considered efficient?

● Basic conditions for a model to be considered
good:
○ High PSNR and SSIM
○ Lower model size
○ Average time to encode one image < 33 ms

Cycle GAN
Model size
(PSNR)
(Size)

Encode Misc
(encode)

GPU
->
CPU

Pickle Send T200 Avg
Value

Misc
(decode)
(CPU)

Decode
(on CPU)
(in ms)

(in ms) (in ms) (ms) (ms) (ms) (sec) (ms) (ms) (in ms)

1 2 Mb
(28.62)
(504 x 504)

10 - 25 0.2 - 10 0.5 - 1 1 - 4 9 - 15 6.821 34 5 - 10 800-1200

2 600 Kb
(30.23)
(504 x 504)

13 - 25 0.2 - 0.3 0.5 - 1 1 - 4 9- 15 7.084 33 5 - 10 400-500

3 600 Kb
(30.23)
(1008 x
1008)

19 - 25 0.2 - 0.3 0.5 - 1 1 - 4 3 - 4
(high
buffer
size)

7.559 37 ----- ------

48

Auto encoder
Model size
(PSNR)
(Size)

Encode Misc
(encode)

GPU
->
CPU

Pickle Send T200 Avg
Value

Misc
(decode)
(CPU)

Decode
(on CPU)

(in ms) (in ms) (ms) (ms) (ms) (sec) (ms) (ms) (in ms)

1 126 Mb
(27.36)
(504 x 504)

30 - 60 0.2 - 1.0 1 - 2 1 - 4 1 - 3 10.259 51 ------- --------

2 4 Mb
(25.56)
(504 x 504)

13 - 65 0.2 - 0.5 0.7 - 3 1- 4 1- 3 8.747 43 5 - 10 400 - 700

3 1 Mb
(31.71)
(1008
x1008)

19 - 28 0.2 - 1 1 - 3 2 - 5 1 - 3 5.971 30 ------ --------

49

Lossy CAE
Model size
(PSNR)
(Size)

Encode Misc
(encode)

GPU
->
CPU

Pickle Send T200 Avg
Value

Misc
(decode)
(CPU)

Decode
(CPU)

(in ms) (in ms) (ms) (ms) (ms) (sec) (ms) (ms) (in ms)

1 35 Mb
(28.88)
(504 x 504)

10 - 25 0.2 - 1 3 - 10 3 - 6 100 -
200

8.694 43 ----- ------

2 2 Mb
(28.56)
(504 x 504)

7 - 15 0.2 - 1 1 - 3 1 - 3 10-15 4.845 24 ----- > 10
seconds

3 2 Mb
(34.01)
(1008 x
1008)

8 - 15 0.2 - 1 6 - 10 5 - 7 6 - 10
(high
buffer
size)

5.763 28 ----- ------

50

Outline
1. What is Image Compression?
2. Deep Learning Techniques for Image Compression
3. Implementation of models
4. Optimizing results
5. Testing on Jetson Nano
6. Comparing the models
7. Conclusion
8. Future Work

Comparison
Lowest (for 1008

x 1008)
Model Size Best value

Encoding time Lossy
CAE

2 Mb 8 - 15 ms

Compressed
size

Auto
encoder

1 Mb 252 x 252

Average time per
image

Lossy
CAE

2 Mb 28 ms

Time to send All models take almost
same time

3 - 10 ms

52

Survey
Model Compression rate

possibility
Processing speed
Possibility

Difficulties Other

AutoEncoder Can be compressed
more
(⅛ of original size)

Fast No constraints on
the output of the
encoder for better
results

(1 - SSIM) loss
gives better results

Cycle-GAN Increasing
compression is
difficult to train

Slow Unstable training,
Dithering

Lossy CAE Can be compressed
by a larger size

Fast Decreasing number
of features lead to
poor results

Uses stochastic
binarization,
(1 - SSIM) loss
gives better results

53

Outline
1. What is Image Compression?
2. Deep Learning Techniques for Image Compression
3. Implementation of models
4. Optimizing results
5. Testing on Jetson Nano
6. Comparing the models
7. Conclusion
8. Future Work

Conclusions

● From the above experiments, Lossy CAE models are the best
performing model in terms of image reconstruction quality and
processing time required on the Jetson Nano.

● However, the features extracted by encoder of Lossy CAE are
larger in size. To obtain features of smaller size, Auto-encoder
models are the best in terms of size of compressed image.

● SSIM loss has provided a great performance boost for smaller
models and can be used in the future to train image
reconstruction models

55

Future work

● Self distillation is a training procedure by which models can be
compressed more in size so that the number of computations
are lesser. I would definitely try this method to train the Lossy
CAE and Auto encoder for performance improvement

● Supposed we want to create a depth map, perform semantic
segmentation and surface normal estimation on the host PC. We
can use a multi-tasking network that can predict all three with
single image by directly sending features. All three tasks will be
done on a single feature vector.

56

Acknowledgements

● I would like to thank Sony Cooperation to give me this great opportunity.
● Thank you to Takuzo Ohara-san, Satoru Mizusawa-san and Koji

Ichikawa-san for their valuable guidance
● To Miho Nomura-san and Chinatsu Honda-san for coordinating
● I would further like to thank all members of the TL-13 for a wonderful

experience
● My goal in the future is to pursue a PhD in Artificial Intelligence, and this

internship has provided me with a great exposure!
● Thank you All !

57

